
UNIQUELY POWERFUL

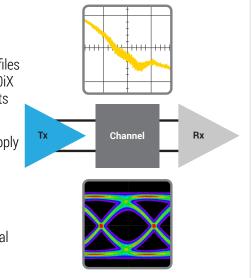
More channels, faster analysis

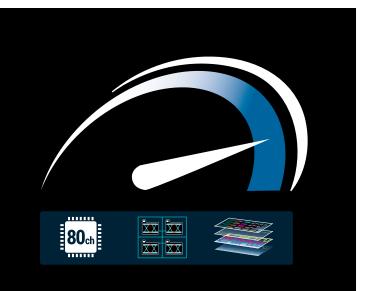
The most powerful high bandwidth oscilloscope available powers through complex calculations faster:

- Up to 80 channels using ChannelSync[™] architecture
- Powerful 24-core server-class CPU
- Up to 192 GB of RAM available

Best for Serial Data & DDR

Unmatched high-speed serial tools


- Simple and powerful compliance test automation
- Most complete serial data analysis toolset
- Comprehensive DDR test
 suite


Analyze the Whole Link at Once

End-to-end link signal integrity analysis

- Import S-parameter files from WavePulser® 40iX and other instruments
- De-embed fixtures, emulate channels, apply transmitter/receiver equalization
- Debug with CrossSync[™] PHY protocol and electrical cross-layer analysis

High Bandwidth, Uniquely Powerful

LabMaster 10 Zi-A

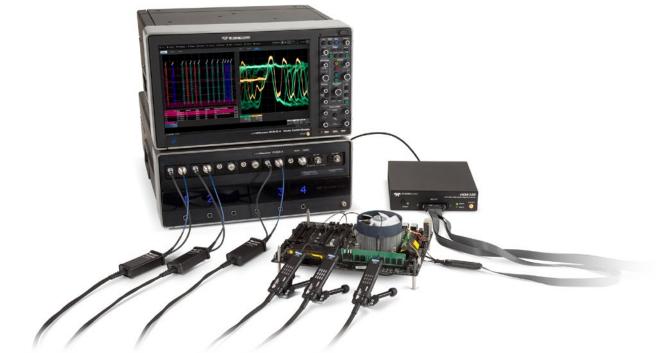
MORE OSCILLOSCOPE CHANNELS, FASTER ANALYSIS

LabMaster 10 Zi-A oscilloscopes can be configured with more channels than any other oscilloscope (up to 80 at up to 36 GHz, or up to 40 at up to 65 GHz). The Master Control Module contains a powerful server-class CPU configurable with up to 192 GB of RAM to more quickly perform the most complex calculations.

Up to 80 Oscilloscope Channels

LabMaster is the only high-bandwidth oscilloscope with the unique ChannelSync architecture for precise timing synchronization by design channel to channel jitter is only 130 fs. LabMaster greatly simplifies greater than 4 channel oscilloscope setups and provides acquisition confidence.

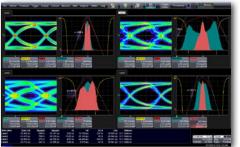
Powerful 24-core Server-class CPU


LabMaster has the most powerful CPU in any oscilloscope - an Intel® Xeon® Gold 6240R 24-core server-class CPU (or better). LabMaster plows quickly and easily through complex calculations, such as PCI Express® receiver calibration routines. Serial data jitter and eye diagram analysis goes faster with LabMaster.

Up to 192 GB of RAM Available

LabMaster's powerful CPU is augmented with an enormous amount of available system RAM to ensure that long memory calculations are handled with ease.

BEST OSCILLOSCOPE FOR SERIAL DATA AND DDR

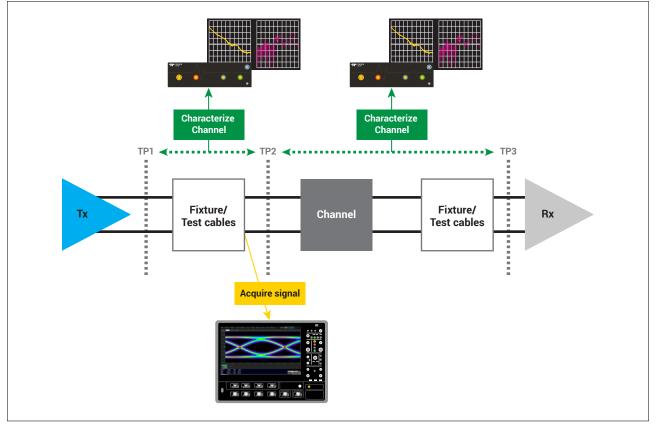

The LabMaster 10 Zi-A is the best oscilloscope platform for high-speed serial data and advanced memory compliance and debug. The combination of more channels, mixed-signal options, serial decoders, and comprehensive compliance, analysis and debug software options puts you in the drivers seat.

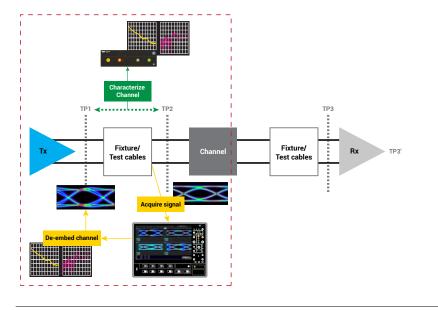
Simple and Powerful Compliance Test Automation

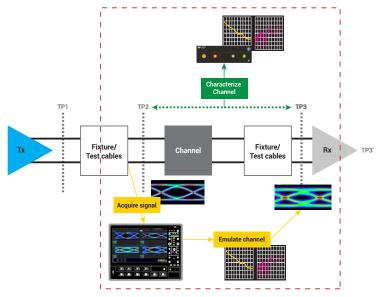
- QualiPHY[®] automation software supports PCI Express[®], USB[®], HDMI[®], DisplayPort[™], DDR, and many other serial data standards
- Fully automated transmitter and receiver testing and fastest receiver test calibration
- Step-by-step instructions and automatic report generation
- Automated pass/fail test reports

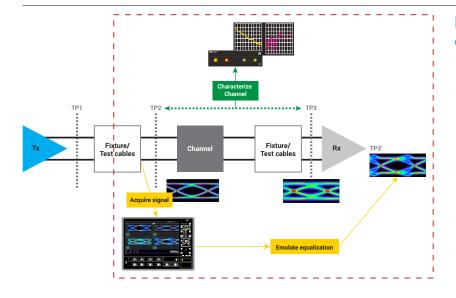
Most Complete Serial Data Analysis Toolset

- Multi-lane jitter and eye analysis
- LaneScape[™] comparison modes
- Vertical noise and crosstalk analysis
- NRZ and PAM support
- Integrated equalization, emulation and de-embedding
- Virtual probing


Comprehensive DDR Test Suite


- Support for DDR2/LPDDR2 through DDR5/LPDDR4X
- JEDEC physical layer compliance test
- Debug Toolkits provide fast problem solving during the DDR design and integration cycle
- HDA125 High-speed Digital Analyzer for flexible, mixed-signal probing
- Unmatched probing versatility up to 30 GHz


ANALYZE THE WHOLE LINK


Combining the WavePulser[®] 40iX High-speed Interconnect Analyzer, LabMaster 10 Zi-A oscilloscope and SDAIII-CompleteLinQ option gives the most complete signal integrity analysis toolkit available. Quickly characterize the entire signal path from transmitter to receiver, acquire high-fidelity waveforms at a convenient test point, and then easily analyze the signal at any point of interest.

De-embed fixtures and test cables

- Measure S-parameter models using WavePulser 40iX, or import from other measurements or simulation tools
- Sophisticated Eye Doctor and VirtualProbe tools easily and accurately remove effects of fixtures and cables from acquired oscilloscope waveforms
- Apply the full SDAIII-CompeteLinQ toolkit to de-embedded waveforms for full eye, jitter and noise analysis directly at the output pins of the device under test

Emulate real-world channel losses

- WavePulser 40iX simplifies and speeds up accurate measurements of test channel loss profiles
- Channel model s-parameter files can be easily imported from the WavePulser 40iX or elsewhere into Eye Doctor and VirtualProbe tools in the oscilloscope
- Acquire waveforms at any point in the signal path, then use VirtualProbe to cleanly embed the effects of the channel
- Use the full analysis capability of SDAIII-CompleteLinQ to compare eye, jitter and noise measurements at multiple test points simultaneously

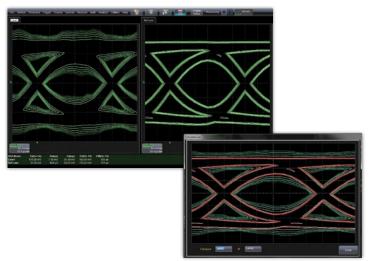
Emulate transmitter and receiver equalization

- SDAIII-CompleteLinQ with Eye Doctor enables the emulation of all common equalization types, including:
 - Transmitter emphasis
 - Receiver FFE
 - Receiver CTLE
 - Receiver DFE

SDAIII-COMPLETELINQ

The SDAIII software option provides the most comprehensive jitter decomposition, eye diagram and analysis tools with advanced signal integrity tools for emulation, de-embedding and equalization simulation.

Key Attributes


- Eye diagram (a), eye mask failure
 (b) and IsoBER eye opening analysis (c)
- Jitter spectrum (a) with noise floor display (b) and inverse FFT of the periodic jitter (c)
- Data dependent jitter (DDj) plot for each bit in synch with pattern (a) and with histogram (b)
- **4.** Time interval error (TIE) jitter track analysis
- 5. Jitter histograms (a) with bathtub curves (b) and CDF plot (c)
- Intersymbol interference (ISI) plots pinpoint bit sequences that have high ISI and are sources of bit errors
- Jitter measurements table with full details for one or more "lanes" plus reference

Advanced Signal Integrity Tools


Complete set of tools for: channel emulation; fixture, cable or channel de-embedding/embedding; adding or removing emphasis; performing CTLE, FFE or DFE equalization.

SDA Signal Clock Eye Jitter M	Noise Crosstalk			Close
Copy Lane4	C3 Enabled: C3 Enabled: Custom Pre: 3.0dB	De-embed the Linear to the Lin	Clock Recovery 10.31 Gbit/s N L Fooddap	Eye leas. Jitter Meas. Joise dimmi

COMPREHENSIVE SERIAL DATA ANALYSIS

Use the unique crosstalk eye to view and compare noise in a way that cannot be done with a traditional eye diagram.

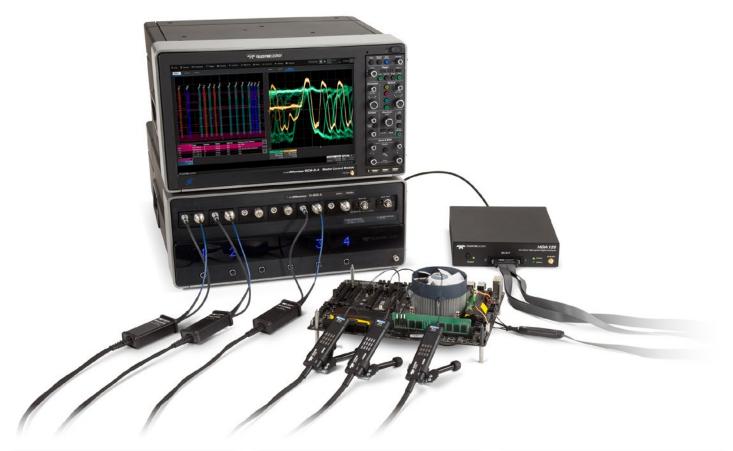
A comprehensive set of jitter measurements, extrapolations and decompositions, with associated views for complete understanding, provides the best capability to debug problems faster.

View noise measurements in both time and frequency domains for insight into sources of crosstalk leading to bit errors.

Fast Single or Multiple Eye Diagrams

- Up to four real-time and one reference comparison eye diagram, NRZ or PAM
- Single lane with multiple-point or multiconfiguration analysis
- Analyze multiple lanes simultaneously
- Fast eye diagram creation
- Reference lane simplifies multi-scenario testing
- IsoBER displays expected eye infringement to a user-settable bit error rate (BER)
- Crosstalk eye contour plots display the impact of excessive noise

Comprehensive Jitter Decomposition & Analysis


- Complete Tj, Rj and Dj decomposition numerics on up to four lanes/configurations plus a reference, NRZ or PAM
- Three different jitter decomposition models
- Complete random (Rj) and non-data dependent jitter (Rj+BUj) parameters and views
- Comprehensive data dependent jitter (DDj) analysis, including DDj plots and histograms, digital pattern display, and ISI plot by pattern
- Periodic jitter (Pj) inverse FFT
- Other jitter parameters including bounded uncorrelated jitter (BUj) and odd-even jitter (OEj)

Vertical Noise & Crosstalk Analysis

- Tools for complete aggressor/victim analysis
- Measure, extrapolate and decompose vertical noise just as you do with (horizontal) jitter
- Noise tracks, histograms and spectrums providing deep insight into noise sources
- Crosstalk eye contour plot shows probabilistic extent of noise, both inside and outside the eye

COMPREHENSIVE DDR TEST SUITE

Teledyne LeCroy offers a full line of DDR test solutions for system bring-up, debug, performance analysis and compliance. Teledyne LeCroy's DDR test suite combines the right tools for every stage of development.

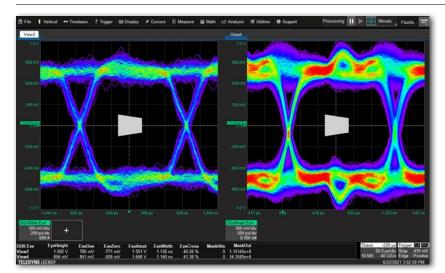
Physical Layer DDR Toolkit

The DDR Debug Toolkit provides test, debug and analysis tools for the entire DDR cycle. All DDR analysis can be performed simultaneously over four different measurement views.

Physical Layer Compliance

The QualiPHY DDR packages perform all clock, electrical and timing tests to conform to the JEDEC specification. Supports all versions of DDR/LPDDR.

Unmatched Probing Versatility


The HDA125 High-speed Digital Analyzer provides the highestperformance (18 digital inputs, up to 12.5 GS/s), most flexible mixed-signal solution for DDR debug and evaluation. Analog differential probes provide up to 30 GHz bandwidth. QuickLink probe tips work with both the HDA125 and analog probes.

COMPREHENSIVE DDR TEST SUITE

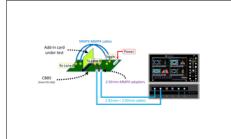
Effortless Burst Separation

- Automatic separation of Read and Write bursts eliminates time-consuming manual burst identification
- Separate bursts based on DQ-DQS skew or based on the command bus (when used with the HDA125)
- Bursted data jitter analysis
- Built-in DDR-specific measurements

Eye Diagram Analysis

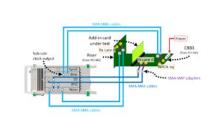
- Up to 10 simultaneous eye diagrams
- Standard or custom-defined pass/fail masks
- Mask violation indicators automatically identify and locate specific unit intervals where mask violations occurred
- Built-in measurements for eye height, eye width and eye opening provide quantitative understanding of system performance
- Compare performance across multiple testing views with simultaneous eye diagrams

Enhanced Debug Capability with the HDA125


- Command bus digital acquisition capabilities
- Full DDR interface visibility simplifies transition from validation to debug
- Trigger on specific states of the command bus
- Command bus activity is tabulated and timecorrelated with the color-coded and labeled physical layer waveforms

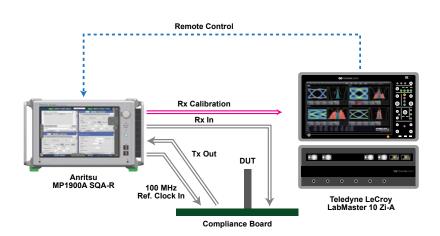
COMPLETE PCI EXPRESS® ELECTRICAL TEST SOLUTIONS

Teledyne LeCroy's PCI Express electrical test solutions combine superior instruments with sophisticated jitter, eye diagram, debug and compliance software for all versions of PCI Express.


- Automated Transmitter, Receiver and Link Equalization (LEQ) testing with QualiPHY software options
- Visibility from physical layer through protocol operations
- LabMaster 10 Zi-A is gold suite certified for all relevant PCI Express 5.0 tests
- LabMaster 10 Zi-A supports PCI Express 6.0 test with PAM4 capabilities

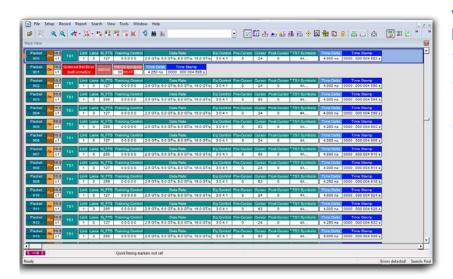
Transmitter (Tx) Testing

- Base specification and compliance testing for add-in cards and systems in CEM, M.2 and U.2 form factors
- QualiPHY fully automates collection and processing of transmitter waveforms
- Supports TF-PCIE4-CTRL controller for full fixture and DUT automation
- Debug electrical compliance issues faster with SDAIII-CompleteLinQ software


Receiver (Rx) Testing

- Receiver calibration and testing using the LabMaster and Anritsu MP1900A BERT
- QualiPHY controls both the LabMaster and MP1900A
- Use WavePulser 40iX for receiver channel characterization and calibration
- Single QualiPHY user interface for Tx and Rx testing

Addie of weigen weigen


Link Equalization (LEQ) Testing

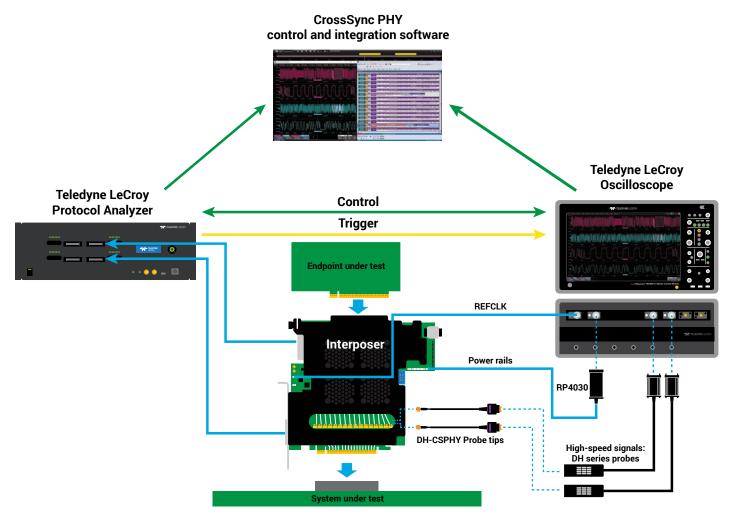
- Fully automated Tx and Rx LEQ testing using QualiPHY with SigTest integration
- Test, fixture and DUT automation for fast throughput without lots of manual steps
- Go directly from compliance test to cross-layer debug using ProtoSync on the LabMaster and LTSSM analysis on the MP1900A
- Link the LabMaster with a protocol analyzer using CrossSync[™] PHY for even deeper interoperability debug

Superior PCIe[®] Test Solutions

- Approved PCI-SIG[®] gold suite solution for PCIe electrical compliance test programs
- High accuracy and repeatability due to superior signal quality
- Fastest receiver test calibration
- Complete DUT and fixture automation

Visibility from Physical Layer Through Protocol Operations

- LTSSM logging and state-machine triggering
- ProtoSync integrates industry-standard protocol display and physical-layer analysis
- Go directly from Link Equalization compliance tests to deep debug



Comprehensive PCI Express 6.0 Characterization Tools

- Unique transmitter equalization tools
- Highest confidence jitter measurements with PAM4 eye diagrams
- Most complete SNDR analysis

CrossSync[®]PHY FOR PCI EXPRESS[®]

Interoperability issues can lead to finger-pointing exercises that cost money and time-to-market. Teledyne LeCroy CrossSync PHY software and interposers merge the functions of your Teledyne LeCroy PCI Express protocol analyzer and oscilloscope - giving insight into link behavior that no other instrument can provide.

Validate and debug active link operation

- CrossSync PHY capable interposers enable observation of both electrical and protocol behavior without disturbing the link
- Sideband signals, reference clock and power rails are all easily accessible to oscilloscope probes
- Optional high-bandwidth oscilloscope probing points for PCI Express data lanes

Quickly resolve interoperability issues by capturing the entire protocol stack

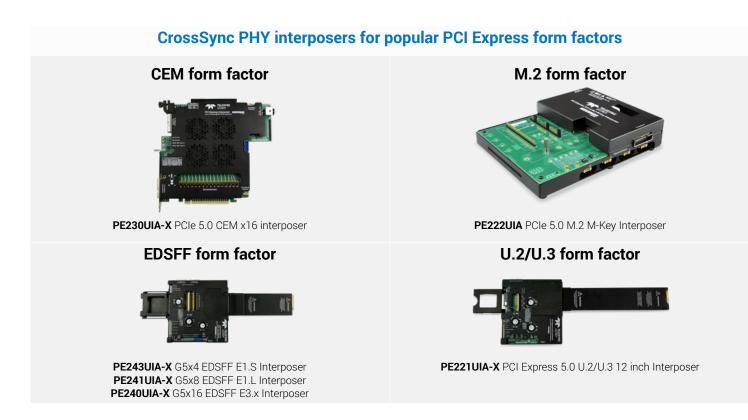
- Trigger protocol analyzer and oscilloscope captures on the same high-level event
- Easily measure timing relationships between protocol and electrical domains
- Faster root-cause analysis means fewer costly finger-pointing exercises

Analyze link training with integrated physical and protocol views

- Observe electrical-level results of protocol-level commands
- Combined navigation means always knowing which protocol and electrical behaviors happen at the same time
- No single instrument can deliver this level of cross-layer insight into link training behavior

The CrossSync PHY software option for your Teledyne LeCroy oscilloscope enables precise, intuitive navigation between timecorrelated protocol analyzer and oscilloscope traces.

Oscilloscope timebase and protocol analyzer acquisition window remain synchronized while navigating through the combined acquisition, for total confidence in timing behavior.

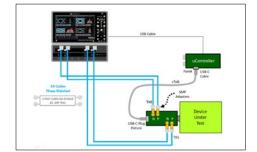

	2004a and an and 2004 2004 2004 00 advertish federal Analysis. To beneroteking teamerer incomplex international 2017 (2012). In 27:0807 (2012) (2012)
	4-X-52220-X-X-848
	chia Record Generato Report Search Vicor Tochi Window Heip
	100 152 Link Larse H_UF15 Training Control Data Rule 1 5 0.0000.000 [25 GT/s: 5.0 GT/s: 5.0 GT/s: 16.0 GT/s: Autonomous Change, 50
	10 Link Lane N_FTS Training Control Data Rate Eg Cont
	ID Link Lane N_FT0 Training Control Data Rate
	Link Lane N.JTS Training Control Data Rate
	Eq Control Dota Rate Eq Control Dota Rate Eq Cont
	LIN Lane N_FTS Training Control Data Rule
Ad M. Ad Autod M. Martin At Mart At	
ALL AND	
*212 m	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Classical Classical H zecond H zecond	
лационан А 🖉 🛣 📷 🗃 🖬 🔯 🔽 🤮 🐠	treventioned ම වී දී රංග සි දා 100 දී 💀 🕘

CrossSync PHY capability enhances Teledyne LeCroy's industry-leading set of PCI Express protocol analysis interposers by adding high-fidelity oscilloscope probing points with simple and convenient signal access.

Easily probe and observe:

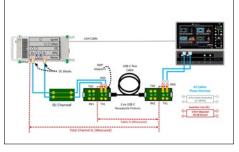
- High-speed data signals
- Reference clock behavior

- Power rail voltage and current
- Sideband signals



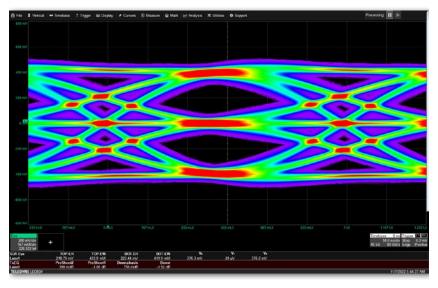
USB AND USB TYPE-C® ELECTRICAL TEST SOLUTIONS

In 2011, Teledyne LeCroy became the first USB-IF approved "Gold Suite" for USB 3.0 at 5 Gb/s. Today, the USB Type-C connector carries multiple lanes each up to 40 Gb/s data supporting USB4[®] Version 2.0, USB4, USB 3.2, Thunderbolt[™] 3/4 and DisplayPort[™] 2 standards. Teledyne LeCroy continues to be the trusted leader with:


- USB-IF approved "Gold Suite" PHY Tx/Rx compliance testing
- VESA approved DisplayPort over USB Type-C compliance testing
- Up to 4 lanes (8 channels) of simultaneous acquistion
- The deepest signal integrity toolbox
- Unmatched PHY-logic and USB Type-C sideband debug

Fastest PHY Compliance

- QualiPHY software automates all USB-C standard Transmitter (Tx) and Receiver (Rx) compliance tests using a single, friendly user interface
- Accurate, repeatable Rx testing with Anritsu MP1900A BERT
- Support for both USB-IF and 3rd party fixtures and software tools
- Single QualiPHY user interface for Tx and Rx testing



- Choose either USB-IF SigTest or Teledyne LeCroy SDAIII analysis methodology
- Debug electrical compliance issues faster with SDAIII-CompleteLinQ eye diagrams, jitter and noise analysis software
- Characterize USB4 Version 2.0 PAM3 eye diagrams and Tx Equalization with SDAIII-PAMx software
- WavePulser 40iX simplifies and speeds up receiver channel characterization and calibration

and we life and a	Nedges (along USD Protocal Later - USD / 1.1 / 2 / 40 - 303 - 30 Add og #3 maar Tary (1.0 Disposed and)
	B in red that has links in
	※回去点出品を当時日に可当び / · 日本当当は信·知識
	A 型专口·最高的情况的公式信息者·古·古希腊器 11 1 1 1
	Tao Ver x
CONTRACT OF THE PROPERTY OF A DATE O	
	STATES AND ADDRESS OF STREET, STATES AND ADDRESS OF STREET, ST
	A CONTRACT OF A
New Life Life	The second secon
and so that had been	
	The second of the second second second
	NAME AND ADDRESS OF A DESCRIPTION OF A D
	Configure automatic
Contract of the second second second second	
	lue C
and the state shade	
HILE OF Record Office Conc	12K inclusion of the Institution
The second secon	
	A Design of the local data with the local data and the local data and the local data and the local data and the
Long the Long the set	
Contraction of Contra	PROPERTY CONTRACTOR OF THE PROPERTY CONTRACTOR OF THE PROPERTY
APPRICACE AND ADDRESS OF ADDRESS OF ADDRESS AD	SHEET A 8-7

PHY-logic & Sideband Debug

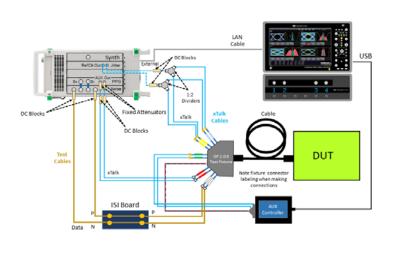
- See the whole link with CrossSync PHY for USB4 and Thunderbolt
- USB4 and USB 3.2/2.0 serial decode options provide decode of USB packets with graphical, intuitive, color-coded decode overlays
- ProtoSync integrates industrystandard protocol display
- USB-PD (Power Delivery) TDMP and DisplayPort-AUX DMP provide unmatched visibility of USB Type-C sideband signals for system debug

US

Type-C Compliance Load Board 5.6"

1m Cable

ype-C Device Test Fixture 1C Jumper on CC1 for Tx1/Rx1 Jumper on CC2 for Tx2/Rx2

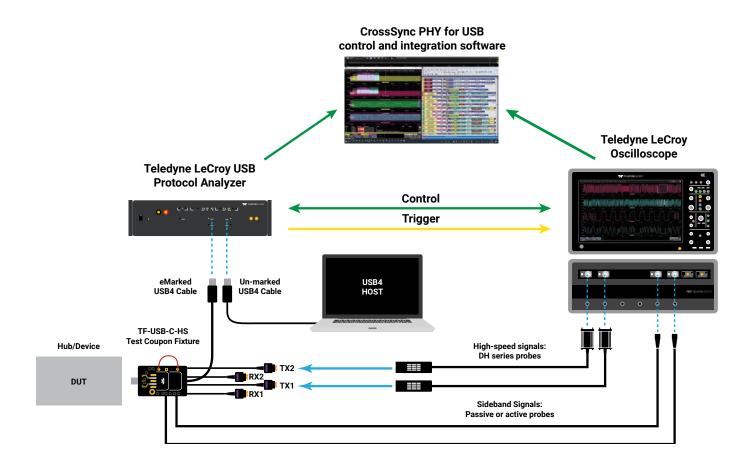

DEVICE

USB4 and Thunderbolt 3/4

- QPHY-USB4-TX-RX provides automated transmitter compliance test automation per the USB4 Gen2 (10 Gb/s NRZ), Gen3 (20 Gb/s NRZ), and Version 2.0 (40 Gb/s PAM3); and Thunderbolt Gen2 (10.3125 Gb/s NRZ) and Gen3 (20.625 Gb/s NRZ) electrical Compliance Test Specifications (CTS)
- Integrates USB4 ETT for DUT control with the Wilder-Tech USB4 test controller, and Thunderbolt electrical scripts with Thunderbolt 3 controllers
- Fully automates receiver calibration and test with the Anritsu MP1900A high-speed BERT

USB 3.2

- QPHY-USB3.2-TX-RX fully automates the USB 3.2 Tx and Rx CTS for Gen1 (5 Gb/s) and Gen2 (10 Gb/s), LFPS Tx/Rx and SCD/LBPM tests
- Supports a variety of generators for Tx compliance pattern control including Teledyne Test Tools AFG, Wilder-Tech USB Type-C controllers and Anritsu MP1900A BERT
- Fully automates Rx calibration and test with the Anritsu MP1900A high-speed BERT solution


DisplayPort over USB Type-C

- QPHY-DP2-SOURCE software automates source (Tx) testing for all DisplayPort 2 (UHBR20, UHBR13, UHBR10) and 1.4a (HBR3, HBR2, HBR, RBR) data rates up to four lanes
- QPHY-DP2-SINK software automates DisplayPort 2 and 1.4a sink (Rx) calibration and testing with the Anritsu MP1900A highspeed BERT solution
- DPAUX DMP provides AUX channel decode, serial data measurements and physical layer measurements
- Supports all VESA approved test fixtures including Standard/Enhanced DP, mDP and USB Type-C

CrossSync[®]PHY FOR USB4[®] AND THUNDERBOLT[™]

Interoperability issues can lead to finger-pointing exercises that cost money and time-to-market. Teledyne LeCroy CrossSync PHY software merges the functions of your Teledyne LeCroy protocol analyzer and oscilloscope - giving insight into link behavior that no other instrument can provide.

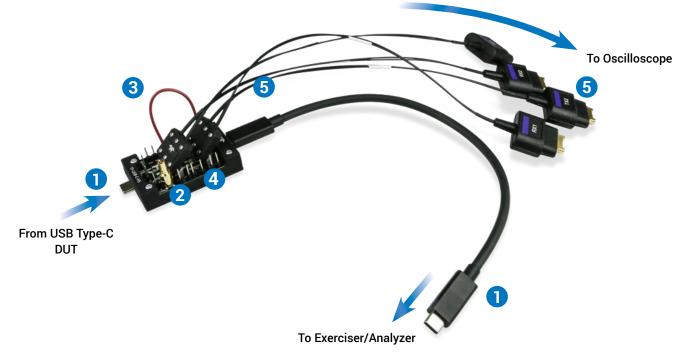
Validate and debug active link operation

- TF-USB-C-HS Test Coupon Fixtures enable observation of both electrical and protocol behavior without disturbing the link
- USB Type-C Sideband signals are all accessible using passive or active probes
- High-bandwidth oscilloscope probing points for USB data lanes

Quickly resolve interoperability issues by capturing the entire protocol stack

- Trigger protocol analyzer and oscilloscope captures on the same high-level event
- Easily measure timing relationships between protocol and electrical domains
- Faster root-cause analysis means fewer costly finger-pointing exercises

Analyze link training with integrated physical and protocol views


- Observe electrical-level results of protocol-level commands
- Combined navigation means always knowing which protocol and electrical behaviors happen at the same time
- No other solution can deliver this level of cross-layer insight into link training

The CrossSync PHY software option for your Teledyne LeCroy oscilloscope enables precise, intuitive navigation between time-correlated protocol analyzer and oscilloscope traces.

Oscilloscope timebase and protocol analyzer acquisition window remain synchronized while navigating through the combined acquisition, for total confidence in timing behavior.

-	CressSync'PHY			Day Trang DED LED	(STA)							
050	International Contraction of Contraction		B. P Q									
UNE												
												5000ms
Teledyn	* LeCroy MCM-25-A				-	0 × 6				photosol Zirothay: 19.2 Product Proce	111/0.500/per2202_0_0_0	CHARME - IT IS
8 FM 3	Vetical Timebase	Trigger 📾 Display	Cursors E Massare	B Mathe let Analysis 1	K Utilities				Search view Window			- #×
905 WV	5.09	TSI Cidwid Sits	SN .							●出金間台開設の •週・記名結約100		
tis n <mark>g</mark>							Packet	ter to		lymbols Duriston	Time	Texa (Samp
400 mV	- BARRAN BARRAN	and the second second second		and the second statement	Nich II. Completion	Distant Street	34511 P3088			6 bytes 104 200 ms	106.000 MS 6	208 606 438
400.00	248-90 mi	6485 m	A152 ms		5.650 ma	Altin	34514	ter to	21 LD SLOS2	6 bytes 96,200 m		208 000 104
	131 0	rterel Sen 12 Orderel S	6				Packet 34515	1.00		bytes Decision 5 bytes 98,200 m	Time Stamp 6 206 606 564	
	Contraction of the local division of the loc		a second second				Packet as 34518	- ter	LI START_RS.	PEC 4 bytes 1.660		2
	Carlos Carlos						44 Packets 34510-34650	1.07		IBT CANANA Engle Lane only Lane 1	LHT2 100 0 eingle Lane only 151 Ch	
			A152 m			6410.00	Pucket 34131	1.41	D START_RS	FEC Duta Dural	es 6, 205 605 06	
807 m/v	1052		STARTASPTC DI PA			1516	eo Packots	Lett	+	LIST LOND NUM	LU12 130 B	
	() (34522-34721 Parket	148	2 FEC 10	engle Lane only Lane 0		
	- Carl	-	/		mal		34539	"Right"	2 LI START_RS_	enc 4 bytes 1500	ns 6 200 606 71	2
-805-64			6.2000.0004743				31 Packets 54545-5464	Right-	GI EI	single Lane only Lane 1	LBT2 TEC 2 Larves supported TS1	
	24.98 (4	6593.04	A158 pt	2358 pc	6.501 pe	2434.00	Packet 34546		10 Sk 062	beston 5 bytes 106 200 no	Time filano 6 . 208 606 724	
	Bird - 0.110 200-110		TH Bulloud Rdr	THE TRANSFER	0 J-508,67 0544	RENDER	Packet		ID START RS			
	Contract /					$A \land A$	34398	"Right"	2 C SORT IS	4 bytes 1.900		0
			- V 4	~/ ¥	Variation (_ V_ 1	17 Packets 3:0597-3465	Right*	G3 10 FEC 10	engle Lane only Lane 0	2 Lanes expooned TS1	otora vamine
			CREATING STATES			1449.00	47 Packeta 34953-34810	Tooler "Roter"	42 FEC 18	angle Lans only Lane 1	LBT2 ICCP 2 Lance supported TS2	OKOP2
Index. IF 1	4 2 36 68 7 1 17 5 16	Sync Lock Ordered S	Deta	c	RC Status		33 Packets 34992-34793	1.eff	1 0 43 FEC TR	angle Lane only Lane 1	LBT2 1510 and only 152 On	
52 53 54	6.20007 • 0000- 6.20007 • 0000- 6.20007 • 0000-	SyncLock OrderedS START-RS-FEC Be P 4 TS1 Ordered Set[TS1	9x0F0F0F0F0F 9x00010110 000038F2 9x6	0010110 00003012 0			57 Packels 34007-34821	Right.	- G3 C0 13	LOT Lane Nor single Lane only Lane 0	LIDT2 (201) 2 Lates supported T12	
C1 (19622 CE 19502 21	Non CT	and of of the		Timebase 0.0 us T		18 Parente	1.00	A RELEVEN	101 FRANKLA	1812 5331 18	Charatters -
200 m - 105	1 mil 125 9 mil	184 milliole 150 milliole 168 palole 168 palole	+		ILMS IN GS/1 E	top 250 mil/ top Postwe			Quatral protected	et		
TELEDYNI	ELECTOR	A CONTRACTOR OF THE OWNER			12/15/02/2	2 9 72 21 AM	20/					

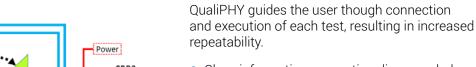
CrossSync PHY capability enhances Teledyne LeCroy's industry-leading Protocol Analyzer/Exercisers by adding high-fidelity oscilloscope probing points with simple and convenient signal access using USB Type-C Test Coupon Fixtures.

- Transparent signal path through the test coupon fixture's USB-C Plug, Receptacle, and included 0.3 meter USB Type-C cable
- 2. Vbus access using Active Single Ended or Voltage Rail Probe
- Current loop for measuring Vbus current through the test coupon fixture
- Access SBU1/SBU2 (USB4 Sidebands and DP-AUX), CC1/ CC2 (Power Delivery), and D+/D-(USB1.1/2.0) signals using square pins
- High-speed TX1/TX2 and RX1/RX2 signals captured using a permanently attached DH-SI Series probe tips

QUALIPHY AUTOMATED SOFTWARE TEST FRAMEWORK

QualiPHY is Teledyne LeCroy's automated software test framework for performing standardized tests on high-speed serial interfaces. QualiPHY automation software is available for PCI Express, USB, DDR, DisplayPort, HDMI and other technologies - for a full list, see our Oscilloscope Features, Options, and Accessories catalog.

Setup	Configuration	Test Selector	Variable Setup	Limits			
DUT T)	pe		Ports		Inalysis Method /	SigTests Versions	
USB4 Router Assembly USB4 Captive Device		Port A		☐ LeCroy - SDA3 ☐ SigTest (Beta)			
-	hunderbolt3 Port Active Cable		Drate		D: Applications	US84\SigTest_US84\US84	_SigTest_rev0p5.
Selecte	ed Speeds		Lanes to Test				
	ien2 (10 Gbs/s) ien2 Legacy (10.31 ien3 (20 Gbs/s) ien3 Legacy (20.62		⊡Lane0 ⊡Lane1				
	tion Settings						
(e) A	cquire Live se Saved Waveforr						
0	se saved waveform t Waveform Path:	D:\Wavefor	ms\US84				
Rool	iguration :						

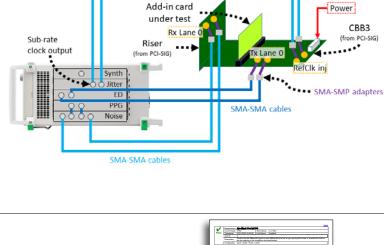

Simplified Setup

QualiPHY dialogs help the user configure all aspects of test execution, including:

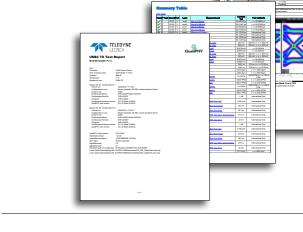
Selecting the set of tests to run

Streamlined Test Execution

- Configuring test parameters
- Customizing limits
- Options to stop after each test or execute sequentially



- Clear, informative connection diagrams help simplify complex test setups and reduce mistakes
- Dialogs explain test execution and required Device Under Test (DUT) settings
- Simple, powerful Host Program Control interface enables complete automation of QualiPHY with external scripting environments (for selected QualiPHY products)


Informative Reporting

QualiPHY produces comprehensive reports documenting test results.

- Save reports in PDF or HTML format
- Screenshots and tabular results included
- Summary table at the start of the report makes it easy to tell pass/fail results at a glance

SMA-SMA cable

HIGH BANDWIDTH DIFFERENTIAL PROBES

The DH series of 8 to 30 GHz active differential probes provides high input dynamic range, large offset capability, low loading and excellent signal fidelity with a range of connection options.

General Purpose Probing up to 30 GHz

Teledyne LeCroy's DH series of 8 GHz to 30 GHz differential probes offer the combination of bandwidth, input range and offset capability to address any high-speed probing requirement from debugging serial data interfaces to validating DDR memory systems.

Exceptional Signal Fidelity

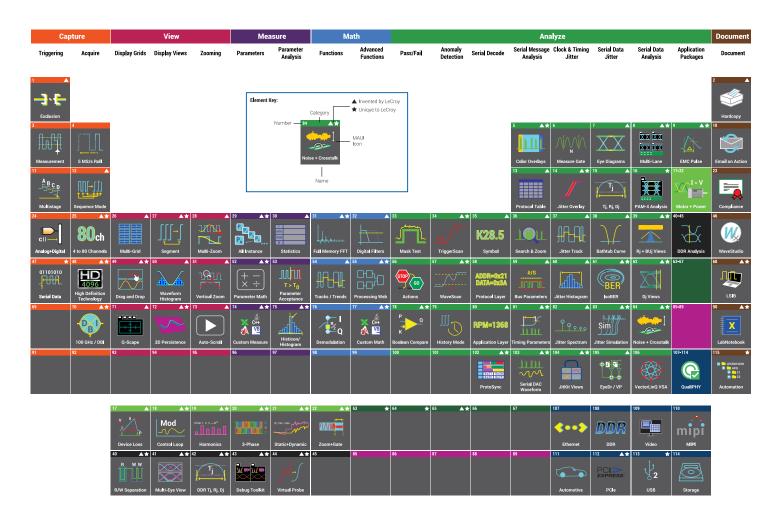
DH series probes provide superior loading characteristics and are calibrated with a custom "fine-tuned" frequency response. The ultra-low loading and flat frequency response ensure accurate measurements.

Wide Variety of Tips

Two 30 GHz solder-in leads let you choose between a 3.5 Vpp input range for general-purpose applications, or high sensitivity with exceptionally low noise. Also available are a 1-meter long 16 GHz high-temperature tip, a 16 GHz handheld browser tip and an 8 GHz QuickLink adapter for connecting mixed-signal probe tips.

Tip Identification

Each DH series tip has its own data onboard - the oscilloscope software automatically selects the correct tip type and precisely corrects for its effects. The result is superior signal fidelity and superior ease-of-use.


Digital Logic Probing Options

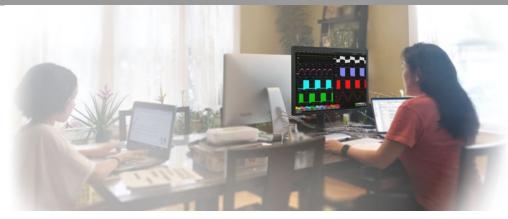
HDA125 High-speed Digital Analyzer

The HDA125 turns your Teledyne LeCroy oscilloscope into the highest-performance, most flexible mixed-signal solution with 12.5 GS/s digital sampling rate (3 GHz digital clock rate) on 18 input channels and the QuickLink probing solution. Ideal for validation of DDR interfaces.

POWERFUL, DEEP TOOLBOX

Our heritage

Teledyne LeCroy's 50+ year heritage is in processing long records to extract meaningful insight. We invented the digital oscilloscope and many of the additional waveshape analysis tools.


Our obsession

Our tools and operating philosophy are standardized across much of our product line. This deep toolbox inspires insight; and your moment of insight is our reward.

Our invitation

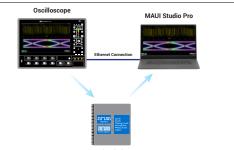
Our Periodic Table of Oscilloscope Tools explains the toolsets that Teledyne LeCroy has deployed in our oscilloscopes. Visit our interactive website to learn more about them. teledynelecroy.com/tools

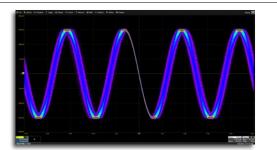
MAUI STUDIO - WORKS WHERE YOU ARE

Unleash the power of a Teledyne LeCroy oscilloscope anywhere, using a PC with MAUI Studio Pro. Work remotely from your oscilloscope and collaborate with ease.

Flexibility to Work Anywhere

MAUI Studio provides the flexibility to remotely work anywhere, and allows anyone anywhere to execute real-time analysis by connecting to an oscilloscope through an Ethernet connection or by analyzing a saved LabNotebook.


Collaborate with Ease


Using MAUI Studio, you can share a LabNotebook file saved from an oscilloscope with all of your colleagues, and everyone will have access to the same software options that are found on your oscilloscope.

The Power of MAUI Studio

Get all the unbelievable analytical capabilities of your oscilloscope on your PC. MAUI Studio has all the analysis tools needed to analyze complex waveform data, enabling your lab's oscilloscopes to be freed up for other activities.

Remote Connection

- Connect to an oscilloscope through an Ethernet connection
- Transfer waveforms and setups from an oscilloscope to MAUI Studio Pro
- Transfer setups from MAUI Studio Pro to an oscilloscope
- Import software options by establishing a remote connection to an oscilloscope

Offline Analysis

- Recall a LabNotebook file to analyze saved waveforms, measurements and setups
- Import software options by recalling a LabNotebook file
- Have access to the same software found on your oscilloscope

Arbitrary Function Generator

- Generate advance waveforms using the AFG
- Easily generate a PAM4 signal
- Add jitter to a clock signal to simulate real-world signal integrity impairments

LabMaster	LabMaster	LabMaster	LabMaster
10-20Zi-A	10-25Zi-A	10-30Zi-A	10-36Zi-A

Vertical System

Analog Bandwidth @ 50 Ω (-3 dB) (2.4/2.92mm Inputs)	20 GHz (≥5 mV/div)	25 GHz (≥5 mV/div)	30 GHz (≥5 mV/div)	36 GHz (≥5 mV/div)	
Rise Time (10–90%, 50 Ω - test limit)	19.3 ps (test limit, flatness mode)	15.4 ps (test limit, flatness mode)	12.8 ps (test limit, flatness mode)	10.7 ps (test limit, flatness mode)	
Rise Time (20–80%, 50 Ω - typical)	14.5 ps (flatness mode)	11.6 ps (flatness mode)	9.6 ps (flatness mode)	8.0 ps (flatness mode)	
Input Channels	Up to 80, depending on confi	guration selected. (Any comb	ination of up to 80 2.92mm i	nput channels)	
Vertical Resolution	8 bits; up to 11 bits with enha	anced resolution (ERES)			
Effective Number of Bits (ENOB) **	5.72	5.56	5.43	5.30	
Vertical Noise Floor (rms, typical, 50 Ω)					
5 mV/div	0.38 mV	0.44 mV	0.49 mV	0.56 mV	
<u>10 mV/div</u>	0.38 mV	0.44 mV	0.49 mV	0.56 mV	
<u>20 mV/div</u>	0.64 mV	0.74 mV	0.81 mV	0.92 mV	
50 mV/div	1.40 mV	1.60 mV	1.70 mV	1.88 mV	
100 mV/div	3.38 mV	3.88 mV	4.28 mV	4.83 mV	
200 mV/div	6.10 mV	6.98 mV	7.53 mV	8.30 mV	
500 mV/div	14.00 mV	16.00 mV	17.00 mV	18.25 mV	
** Measured at 50 mV/div, 7 divisions (87.5% f					
Sensitivity	50 Ω (2.92mm): 5 mV-500n	nV/div, fully variable (5-9.9 m\	//div via zoom)		
DC Vertical Gain Accuracy	±1% F.S. (typical), offset at 0'	V; ±1.5% F.S. (test limit), offset	t at OV		
(Gain Component of DC Accuracy)		. 1)			
Channel-Channel	DC to 36 GHz: 60 dB (>1000:1)				
Isolation	(For any two 2.92mm input channels, same or different v/div settings, typical)				
Offeret Denne	50 Ω:				
Offset Range	±500 mV @ 5-75 mV/div				
	±4 V @ 76 mV/div -500mV/d	iv			
DC Vertical Offset Accuracy	$\pm(1.5\% \text{ of offset setting} + 1.5)$	i% F.S. + 1 mV) (test limit)			
-					
Vertical System					
Maximum Input Voltage	2.92 mm Inputs: ±2 Vmax@·	<76mV/div, 5.5Vrms@≥76mV	/div		
Input Coupling	2.92 mm Inputs: 50 Ω: DC, G	ND			
Input Impedance	2.92mm Inputs: 50 Ω+/-2%				
Bandwidth Limiters	Fully variable from 1 GHz to	instrument bandwidth in incre	ements of 100 MHz		
Rescaling	Length: meters, inches, feet,	yards, miles; Mass: grams, slu	ugs; Temperature: celsius, fał	nrenheit, kelvin; Angle:	
-	radian, arcdegr, arcmin, arcse	ec, cycles, revolutions, turns; V	elocity: m/s, in/s, ft/s, yd/s, n	niles/s; Acceleration: m/	
		iters, cubic meters, cubic inch			
		cal, bar, atmosphere (technica			
		peres reactive, farad, coulomb			
		Magnetic: weber, tesla, henry,			
		cond, frequency, revolution/se	econd, revolution/minute, N·m	n, Ib-tt, Ib-in, oz-in, watt,	
	horsepower; Other: %.				
Horizontal - Analog Channels					
Timebases	Internal timebase with 10 GF	Hz clock frequency common to	o all input channels. Single.		
	distributed 10 GHz clock for	all channels ensures precise s	synchronization with timing		
	accuracy between all channe	els identical to that provided w	vithin a single, conventional		
	oscilloscope package.				
Time (Division Develop	10 mg/dby 050 g/ 11 / 1		antatana ana ana ang ang ang ang ang ang ang		
Time/Division Range 10 ps/div-256 s/div (maximum capture time is based on minimum sar			minimum sample rate of		
	200kS/s and installed memory).				
Clock Accuracy	< 0.1 ppm + (aging of 0.05pp	om/yr from last calibration)			

	LabMaster 10-50Zi-A	LabMaster 10-59Zi-A	LabMaster 10-65Zi-A
Vertical System			
Analog Bandwidth @ 50 Ω (-3 dB) (1.85mm Inputs)	50 GHz (≥10 mV/div)	59 GHz (≥10 mV/div)	65 GHz (≥10 mV/div)
Analog Bandwidth @ 50 Ω (-3 dB) (2.4/2.92mm Inputs)	36 GHz (≥5 mV/div)	36 GHz (≥5 mV/div)	36 GHz (≥5 mV/div)
Rise Time (10–90%, 50 Ω - test limit)	8 ps (test limit, flatness mode)	6.9 ps (test limit, flatness mode)	6.5 ps (test limit, flatness mode)
Rise Time (20–80%, 50 Ω - typical)	6 ps (flatness mode)	5.2 ps (flatness mode)	4.9 ps (flatness mode)
Input Channels	Up to 40, depending on configuration s Up to 80 @ 36 GHz	selected.	
Vertical Resolution	8 bits; up to 11 bits with enhanced res	olution (ERES)	
Effective Number of Bits (ENOB) **	5.19	5.07	5.00
Vertical Noise Floor (rms, 50 Ω)			
10 mV/div	0.89 mV	0.95 mV	0.97 mV
20 mV/div	1.48 mV	1.58 mV	1.61 mV
50 mV/div	3.20 mV	3.45 mV	3.55 mV
80 mV/div	5.05 mV	5.6 mV	5.75 mV

** Measured at 50 mV/div, 7 divisions (87.5% full-scale)

Sensitivity	50 Ω (2.92mm): 5 mV–500mV/div, fully variable (5-9.9 mV/div via zoom) 50 Ω (1.85mm): 10 mV–80mV/div, fully variable.				
	Higher gain settings possible through use of external attenuators.				
DC Vertical Gain Accuracy	$\pm 1\%$ F.S. (typical), offset at 0 V; $\pm 1.5\%$ F.S. (test limit), offset at 0 V				
(Gain Component of DC Accuracy)					
Channel-Channel	DC to 36 GHz: 60 dB (>1000:1)				
Isolation	(For any two 2.92mm input channels, same or different v/div settings, typical)				
	36 to 65 GHz: 40 dB (>100:1)				
	(For any two 1.85mm input channels, same or different v/div settings, typical)				
Offset Range	50 Ω (1.85 mm):				
	±500 mV @ 10–80 mV/div				
	50 Ω (2.92mm):				
	±500 mV @ 5-75 mV/div				
	±4 V @ 76 mV/div -500mV/div				
DC Vertical Offset Accuracy	±(1.5% of offset setting + 1.5% F.S. + 1 mV) (test limit)				
Vertical System					
Maximum Input Voltage	2.92 mm Inputs: ±2 Vmax@<76mV/div, 5.5Vrms@≥76mV/div				
	1.85 mm Inputs: ±2 Vmax@≤80mV/div				
Input Coupling	2.92 mm Inputs: 50 Ω: DC, GND				
	1.85 mm Inputs: 50 Ω: DC				
Input Impedance	2.92mm Inputs: 50 Ω+/-2%				
	1.85mm Inputs: 50 Ω+/-2%				
Bandwidth Limiters	Fully variable from 1 GHz to instrument bandwidth in increments of 100 MHz				
Rescaling	Length: meters, inches, feet, yards, miles; Mass: grams, slugs; Temperature: celsius, fahrenheit, kelvin; Angle: radian, arcdegr, arcmin, arcsec, cycles, revolutions, turns; Velocity: m/s, in/s, ft/s, yd/s, miles/s; Acceleration: m/s2, in/s2, ft/s2, g0; Volume: liters, cubic meters, cubic inches, cubic feet, cubic yards; Force (Weight): newton, grain, ounce, pound; Pressure: pascal, bar, atmosphere (technical), atmosphere (standard), torr, psi; Electrical: volts, amps watts, volt-amperes, volt-amperes reactive, farad, coulomb, ohm, siemen, volt/meter, coulomb/m2, farad/meter, siemen/meter, power factor; Magnetic: weber, tesla, henry, amp/meter, henry/meter; Energy: joule, Btu, calorie; Rotating Machine: radian/second, frequency, revolution/second, revolution/minute, N·m, lb-ft, lb-in, oz-in, watt, horsepower; Other. %.				
Horizontal - Analog Channels					
Timebases	Internal timebase with 10 GHz clock frequency common to all input channels. Single, distributed 10 GHz clock for all channels ensures precise synchronization with timing accuracy between all channels identical to that provided within a single, conventional oscilloscope package.				
Time/Division Range	For >36 GHz Mode: 10 ps/div - 320 µs/div (maximum capture time is based on 160 GS/s and installed memory). For ≤36 GHz Mode: 10 ps/div-256 s/div (maximum capture time is based on minimum sample rate of 200kS/s and installed memory).				
Clock Accuracy	< 0.1 ppm + (aging of 0.05 ppm/yr from last calibration)				

	LabMaster 10-20Zi-A	LabMaster 10-25Zi-A	LabMaster 10-30Zi-A	LabMaster 10-36Zi-A		
Horizontal - Analog Channels (co	ont'd)					
Sample Clock Jitter	Up to 3.2ms Acquired Time Range: 50fsrms (Internal Timebase Reference) 50fsrms (External Timebase Reference) Up to 6.4ms Acquired Time Range: 130fsrms (Internal Timebase Reference) 130fsrms (External Timebase Reference)					
Delta Time Measurement Accuracy	$ (1 \text{ Naise })^2$	Clock Jitter)² (RMS) + (clock acc	curacy * reading) (seconds)			
Jitter Measurement Floor	$\sqrt{\left(\frac{Noise}{SlewRate}\right)^2}$ + (Sample	Clock Jitter) ² (RMS, seconds, Tl	E)			
Jitter Between Channels	<250fsrms (TIE, typical, measured at max	imum bandwidth)				
Channel-Channel Deskew Range	±9 x time/div. setting, or 25 ns	max., each channel				
External Timebase Reference (Input)	10 MHz or 100MHz; 50 Ω imp	edance, applied at the rear in	nput of MCM-Zi-A Master Cont	rol Module		
External Timebase Reference (Output)	10 MHz or 100 MHz ; 50 Ω im	pedance, output at the rear of	of MCM-Zi-A Master Control M	odule		

Acquisition - Analog Channels

Sample Rate (Single-Shot)	80 GS/s on 6	each channel.		
Standard Memory	32 Mpts, 1,0	00 segments		
Memory Options	Option	Mem/Ch	Max Segments	
	S-32	32 Mpts	7,500	
	M-64	64 Mpts	15,000	
	L-128	128 Mpts	15,000	
	VL-256	256 Mpts	15,000	
	XL-512	512 Mpts	15,000	
Intersegment time	1 µs			
Aueroaina	Cummeday	proging to 1 millio	ourogener continuous overeging to	1 million ouroone

Averaging	Summed averaging to 1 million sweeps; continuous averaging to 1 million sweeps
Enhanced Resolution (ERES)	From 8.5 to 11 bits vertical resolution
Envelope (Extrema)	Envelope, floor, or roof for up to 1 million sweeps
Interpolation	Linear or Sin x/x

Vertical, Horizontal, Acquisition - Digital Channels with HDA125-18-SYNC

Maximum Input Frequency	3 GHz
Minimum Detectable Pulse Width	167ps
Input Dynamic Range	±10V on any single ended input
	±7.5V max differential
Input Impedance (Flying Leads)	QL-SI tips: 110 kΩ, 0.12pF differential
Input Channels	18 Digital Channels
Maximum Input Voltage	±15V on any single ended input
	±15V max differential
Minimum Input Voltage Swing	150 mV p-p
Threshold Selections	User defined
Threshold Accuracy	±(25mV + 3% of threshold setting)
User Defined Threshold Range	±5V, settable per channel in 5 mV steps
User Defined Hysteresis Range	50mV - 600mV settable per channel
Sample Rate	12.5 GS/s
Channel-to-Channel Skew	±160ps
Deskew Range	±1.6ns in 80ps steps

	LabMaster 10-50Zi-A	LabMaster 10-59Zi-A	LabMaster 10-65Zi-A		
Horizontal - Analog Channels (co	nťd)				
Sample Clock Jitter	Up to 3.2ms Acquired Time Range : 50fsrms (Internal Timebase Reference) 50fsrms (External Timebase Reference) Up to 6.4ms Acquired Time Range : 130fsrms (Internal Timebase Reference) 130fsrms (External Timebase Reference)				
Delta Time Measurement Accuracy	$\sqrt{2} * \sqrt{\left(\frac{Noise}{SlewRate}\right)^2} + (Sample Clock Jitter)^2$ (RMS) + (clock accuracy * reading) (seconds)				
Jitter Measurement Floor	$\sqrt{\left(\frac{Noise}{SlewRate} ight)^2}$ + (Sample Clock Jitter) ² (RMS, seconds, TIE)				
Jitter Between Channels	<190fsrms (TIE, typical, measured at maximum bandwidth)	<150fsrms (TIE, typical, measured at maximum bandwidth)	<130fsrms (TIE, typical, measured at maximum bandwidth)		
Channel-Channel Deskew Range	±9 x time/div. setting, or 25 ns max., each channel				
External Timebase Reference (Input)	10 MHz or 100MHz; 50 Ω impedance, applied at the rear input of MCM-Zi-A Master Control Module				
External Timebase Reference (Output)	10 MHz or 100 MHz ; 50 Ω impedance	, output at the rear of MCM-Zi-A Maste	r Control Module		

Acquisition - Analog Channels

Sample Rate (Single-Shot)	160 GS/s o	160 GS/s on each channel in >36 GHz Mode.		
	80 GS/s on	80 GS/s on each channel in ≤36 GHz Mode.		
Standard Memory	64 Mpts, 1,0	64 Mpts, 1,000 segments		
Memory Options	Option	Mem/Ch	Max Segments	
	S-32 M-64	64 Mpts 128 Mpts	3,500 7,500	

	L-128	256 Mpts	15,000
	VL-256	512 Mpts	15,000
	XL-512	1024 Mpts	15,000
	(In ≤36 GHz I	Modes, reference n	nemory specification for LabMaster 10 Zi-A 36 GHz Systems)
Intersegment time	1 µs		
Averaging	Summed av	eraging to 1 millio	on sweeps; continuous averaging to 1 million sweeps
Enhanced Resolution (ERES)	From 8.5 to	11 bits vertical res	solution
Envelope (Extrema)	Envelope, flo	oor, or roof for up t	to 1 million sweeps
Interpolation	Linear or Sir	n x/x	

Vertical, Horizontal, Acquisition - Digital Channels with HDA125-18-SYNC

Maximum Input Frequency	3 GHz
Minimum Detectable Pulse Width	167ps
Input Dynamic Range	±10V on any single ended input
	±7.5V max differential
Input Impedance (Flying Leads)	QL-SI tips: 110 kΩ, 0.12pF differential
Input Channels	18 Digital Channels
Maximum Input Voltage	±15V on any single ended input
	±15V max differential
Minimum Input Voltage Swing	150 mV p-p
Threshold Selections	User defined
Threshold Accuracy	±(25mV + 3% of threshold setting)
User Defined Threshold Range	±5V, settable per channel in 5 mV steps
User Defined Hysteresis Range	50mV - 600mV settable per channel
Sample Rate	12.5 GS/s
Channel-to-Channel Skew	±160ps
Deskew Range	±1.6ns in 80ps steps

	LabMaster 10-20Zi-A	LabMaster 10-25Zi-A	LabMaster 10-30Zi-A	LabMaster 10-36Zi-A
Triagoning System	10-2021-A	IU-ZJZI-A	TU-SUZI-A	10-30ZI-A
Triggering System Modes	Normal, Auto, Single and St			
Sources			internal Fast Edge; or any in	nut abannal (Edga triggar
Sources	only) on additional 10-xxZi-A	MART, Cascade triggers), AUX Acquisition Modules (Channel	ls 5 and higher).	put channel (Euge triggel
		ch source except line trigger.		
Coupling	DC, AC, HFRej, LFRej			
Pre-trigger Delay		adjustable in 1% increments of		
Post-trigger Delay		me mode, limited at slower tim	ne/div settings	
Hold-off	From 2 ns up to 20 s or fror			
Trigger and Interpolator Jitter		re assisted), 2 ps rms (typical,	hardware)	
Internal Trigger Level Range	±4.1 div from center			
External Trigger Level Range	For any LabMaster 10xx-Zi- (Only Ch1-4 Acquisition Mo	A Acquisition Module: Aux (±0. dule has ""active"" AUX Input)	4 V)	
Maximum Trigger Rate		nd (in Sequence Mode, up to 4		
Trigger Sensitivity with Edge Trigger	For Ch 1-80 of a LabMaster		L	
(1.85/2.4/2.92mm Inputs)	3 div @ < 12 GHz	,		
	1.5 div @ < 3 GHz			
	1.0 div @ < 200 MHz			
	(for DC coupling, ≥ 10 mV/d			
Trigger Sensitivity with Edge Trigger	For Ch 1-4 LabMaster 10xx-	Zi-A Acquisition Module:		
(Aux Input)	2 div @ < 1 GHz, 1.5 div @ < 500 MHz,			
	1.0 div @ < 200 MHz,			
	(for DC coupling)			
Max. Trigger Frequency,	For Ch 1-4 only of any LabM	laster 10xx-Zi-A Acquisition Mo	odule:	
SMART Trigger	2.0 GHz @ ≥ 10 mV/div			
	(minimum triggerable width	200 ps)		
Trigger Types				
Edge	Triggers when signal meets	slope (positive, negative, or eit	her) and level condition.	
Width		e or both (widths selectable as		intermittent faults.
Glitch		tive glitches (widths selectable		
Window		window defined by adjustable		
Pattern	Logic combination (AND, NA	ND, OR, NOR) of 5 inputs (4 ch high and low level can be select	annels and external trigger in	put). Each source can be
Runt		e runts defined by two voltage		
Slew Rate		t limits for dV, dt and slope. Se		
Interval	Triggers on intervals selecta		lect edge liftlits between 1 h	
Dropout		for longer than selected time b	etween 1 ns and 20 s	
Exclusion Triggering		s by specifying the expected b		that condition is not met
Measurement Trigger		of measurement parameters t st event in a Cascade Trigger.		
Markington Overlife				
Multi-stage: Qualified	sources is selectable by tim			
Multi-stage: Qualified First	In Sequence acquisition mo satisfied in the first segmen	de, triggers repeatably on ever t of the acquisition. Holdoff be	t B only if a defined pattern, etween sources is selectable	state or edge (event A) is by time or events.
Mult-Stage: Cascade (Sequence) Trigger, Capability		er on "B" event. Or Arm on "A" e		
Mult-Stage: Cascade (Sequence)	Cascade A then B: Edge, Wi	ndow, Pattern (Logic) Width, Gl	itch, Interval, Dropout, or Me	asurement. Measurement
Trigger, Types	can be on Stage B only.	leasurement): Edge, Window, P	lattorn (Lagia) Width Olitak	Intorval Dranquit ar
	Measurement. Measureme Cascade A then B then C: Ed	nt can be on Stage C only.	attern (Logic), width, Gitten,	interval, Dropout, or
Mult-Stage: Cascade (Sequence)		B and C is selectable by time of	or number of events	
Trigger, Holdoff	Measurement trigger select	ion as the last stage in a Casca	ade precludes a holdoff setti	ng between the prior stage
	and the last stage.		,	J
High an and Oard (Destant 17.1				
High-speed Serial Protocol Trigg				
Data Rates	Option LM107: 14CPIT 20P	SYMBOL-TD: 600 Mb/s to 6.5 G SYMBOL-TD: 600 Mb/s to 14.	D/S, Channel 4 input only	
		nly available on signal rates ≥ 6		
Pattern Length	80 bits NRZ, eight 8b/10b s			
······································	, e.g.(00, 1000	, <u>sele, e is</u> , ees eynisor		

	LabMaster 10-50Zi-A	LabMaster 10-59Zi-A	LabMaster 10-65Zi-A
Triggering System			
Modes	Normal, Auto, Single and Stop		
Sources		scade triggers), AUX, internal Fast Edge; n Modules (Channels 5 and higher). except line trigger.	or any input channel (Edge trigger
Coupling	DC, AC, HFRej, LFRej		
Pre-trigger Delay	0 to 100% of memory size (adjustable		
Post-trigger Delay	0–10,000 divisions in real time mode,	<u> </u>	
Hold-off	From 2 ns up to 20 s or from 1 to 99,99		
Trigger and Interpolator Jitter	<0.1 ps rms (typical, software assisted), 2 ps rms (typical, hardware)	
Internal Trigger Level Range	±4.1 div from center		
External Trigger Level Range	For any LabMaster 10xx-Zi-A Acquisitie (Only Ch1-4 Acquisition Module has "a		
Maximum Trigger Rate	1,000,000 waveforms/second (in Sequ	· · · · · · · · · · · · · · · · · · ·	
Trigger Sensitivity with Edge Trigger	For Ch 1-80 of a LabMaster 10 Zi-A sys	stem:	
(1.85/2.4/2.92mm Inputs)	3 div @ < 12 GHz 1.5 div @ < 3 GHz		
	1.0 div @ < 200 MHz		
	(for DC coupling, $\geq 10 \text{ mV/div}$, 50 Ω)		
Trigger Sensitivity with Edge Trigger	For Ch 1-4 LabMaster 10xx-Zi-A Acquis	sition Module:	
(Aux Input)	2 div @ < 1 GHz.		
	1.5 div @ < 500 MHz,		
	1.0 div @ < 200 MHz, (for DC coupling)		
Max. Trigger Frequency,	For Ch 1-4 only of any LabMaster 10x	-7i-A Acquisition Module	
SMART Trigger	$2.0 \text{ GHz} @ \ge 10 \text{ mV/div}$		
55-	(minimum triggerable width 200 ps)		
Trimmer Terror			
Trigger Types	Tripping when signal master along (as		
Edge Width		itive, negative or either) and level condit vidths (widths selectable as low as 200	
Glitch		s (widths selectable as low as 200 ps to	
Window	Triggers when signal exits a window de		
Pattern			trigger input) Each source can be
		DR) of 5 inputs (4 channels and external w level can be selected independently. T	
Runt Slew Rate		fined by two voltage limits and two time dV, dt and slope. Select edge limits betv	
Interval	Triggers on intervals selectable betwee		
Dropout		han selected time between 1 ns and 20	<u> </u>
Exclusion Triggering		ying the expected behavior and triggerir	
Measurement Trigger		ement parameters trigger on a measure	
	be used as only trigger or last event in	a Cascade Trigger.	·
Multi-stage: Qualified	sources is selectable by time or events		-
Multi-stage: Qualified First	satisfied in the first segment of the acc	s repeatably on event B only if a defined quisition. Holdoff between sources is se	electable by time or events.
Mult-Stage: Cascade (Sequence) Trigger, Capability		rent. Or Arm on "A" event, then Qualify o	
Mult-Stage: Cascade (Sequence)	Cascade A then B: Edge, Window, Patte	ern (Logic) Width, Glitch, Interval, Dropo	ut, or Measurement. Measurement
Trigger, Types	can be on Stage B only.	nt): Edge, Window, Pattern (Logic), Width	Clitch Interval Dropout or
	Measurement. Measurement can be c	n Stage C only	i, Gillon, Interval, Dropout, or
	Cascade A then B then C: Edge, Windo	w, Pattern (Logic)	
Mult-Stage: Cascade (Sequence)	Holdoff between A and B or B and C is	selectable by time or number of events.	
Trigger, Holdoff		ast stage in a Cascade precludes a hold	loff setting between the prior stage
	and the last stage.		
High-speed Serial Protocol Trigg	ering (Optional)		
Data Rates): 600 Mb/s to 6.5 Gb/s, Channel 4 inpu	t only
	Option LM10Zi-14GBIT-80B-SYMBOL-1	D: 600 Mb/s to 14.1 Gb/s. Channel 4 in	put only
	(Note: Channel 3 input will capture sign	nal for triggering when oscilloscope is in	ı ≥ 50 GHz mode)
Dattara Longth	64b/66b triggering only available on si 80 bits NRZ, eight 8b/10b symbols, 64		
Pattern Length	ου bits infle, eight δb/ LOB symbols, 64		

	LabMaster 10-20Zi-A	LabMaster 10-25Zi-A	LabMaster 10-30Zi-A	LabMaster 10-36Zi-A
Measurement Tools				
Measurement Functionality	Display up to 12 measurement par deviation, and total number. Each of Histicons provide a fast, dynamic v addition, subtraction, multiplication measurement on the source wave or waveform state.	occurrence of each parameter view of parameters and wave or or division of two different	er is measured and addeo eshape characteristics. P parameters. Parameter g	d to the statistics table. arameter math allows ates define the location for
Measurement Parameters - Horizontal + Jitter	Cycles (number of), Cycle to Cycle, (number of, @level), Fall Time (90- N Cycle Jitter (peak-peak), Number (10-90, @levels), Setup (@levels), S Time (@level), Width (50%, @level)	10, @levels), Frequency (50% of Points, Period (50%, @lev Skew (@levels), Slew Rate (@	s, @level), Half Period (@l vel), ∆ Period (@level), Ph Ilevels), Time Interval Erro	evel), Hold Time (@level),
Measurement Parameters - Vertical	Amplitude, Base, Level@X, Maximu			
Measurement Parameters - Pulse	Area, Base, Fall Time (90-10, 80-20 Width (50%)			
Measurement Parameters - Statistical (on Histograms)	Full Width (@ Half Max, @%), Amp Range, RMS, Std. Deviation, Top, X			
Math Tools				
Math Functionality	Display up to 12 math functions tra operations on each function trace,	and function traces can be o	chained together to perfo	rm math-on-math.
Math Operators - Basic Math	Average (summed), Average (conti Reciprocal, Rescale (with units), Re	oof, Sum (+)), Product (x), Ratio (/),
Math Operators - Filters	Enhanced resolution (to 15 bits ver			
Math Operators - Frequency Analysis	FFT (power spectrum, magnitude, memory length. Select from Recta	ngular, VonHann, Hamming,	FlatTop and Blackman H	arris windows.
Math Operators - Functions	Absolute value, Correlation (two wa Invert (negate), Log (base e), Log (l			
Math Operators - Other	Segment, Sparse			
Measurement and Math Integrati	on			
	Histograms to display statistical d to 1 million measurement parameter parameter. Persistence histogram	ers. Track (display paramete	r vs. time, time-correlate	
Pass/Fail Testing				
	Display up to 12 Pass/Fail queries <, \leq , =, >, \geq , within limit $\pm\Delta$ value or In, or Any Out conditions). Combin True", "Any False", or groups of "All" Hardcopy (send email, save screen	%) or Mask Test (pre-defined e queries into a boolean expr or "Any", with following THE	or user-defined mask, w ession to Pass or Fail IF N Save (waveforms), Sto	aveform All In, All Out, Any 'All True", "All False", "Any o, Alarm, (send) Pulse,
Display System				
Size	Color 15.3" flat panel TFT-Active M	atrix LCD with high-resolution	n touch screen	
Resolution	WXGA; 1280 x 768 pixels			
Number of Traces Grid Styles	Display a maximum of 40 traces. S Auto, Single, Dual, Triple, Quad, Oct some software options.			
Waveform Representation	Sample dots joined, or sample dots	s only		
Processor/CPU			(
Type Drocococr Momony	Intel® Xeon® Gold 6240R 24-core, 4		per core (up to 4.0 GHz i	n Turbo mode) or better
Processor Memory Operating System	<u>32 GB standard. Up to 192 GB opt</u> Microsoft Windows [®] 10	ionally available.		
Oscilloscope Operating Software	Teledyne LeCroy MAUI [™] with OneT	ouch		
Real-Time Clock	Date and time displayed with wave		support to synchronize to	nrecision internal clocks
	bate and time displayed with Wave	on in nardcopy mes. on F :	support to synchronize to	precision internal ciocks.

	LabMaster 10-50Zi-A	LabMaster 10-59Zi-A	LabMaster 10-65Zi-A
Measurement Tools			
Measurement Functionality	Display up to 12 measurement parame deviation, and total number. Each occu Histicons provide a fast, dynamic view addition, subtraction, multiplication or measurement on the source waveform or waveform state.	rrence of each parameter is measure of parameters and waveshape chara division of two different parameters. F Derameter accept criteria define allo	d and added to the statistics table. cteristics. Parameter math allows Parameter gates define the location for wable values based on range setting
Measurement Parameters - Horizontal + Jitter	Time (@level), Width (50%, @level), Δ V	plevels), Frequency (50%, @lével), Hal Points, Period (50%, @level), Δ Period (@levels), Slew Rate (@levels), Time Vidth (@level), X(value)@max, X(value)	f Périod (@Ìevel), Hold Time (@level), (@level), Phase (@level), Rise Time Interval Error (@level), Time (@level), Δ)@min
Measurement Parameters - Vertical	Amplitude, Base, Level@X, Maximum, M		
Measurement Parameters - Pulse	Area, Base, Fall Time (90-10, 80-20, @le Width (50%)	evels), Overshoot (positive, negative),	Rise Time (10-90, 80-20, @levels), Top,
Measurement Parameters - Statistica (on Histograms)	l Full Width (@ Half Max, @%), Amplitud Range, RMS, Std. Deviation, Top, X(valu		
Math Tools			
Math Functionality	Display up to 12 math functions traces operations on each function trace, and		
Math Operators - Basic Math	Average (summed), Average (continuou Reciprocal, Rescale (with units), Roof, S	ıs), Difference (–), Envelope, Floor, İnv	
Math Operators - Filters	Enhanced resolution (to 15 bits vertical		
Math Operators - Frequency Analysis	FFT (power spectrum, magnitude, phas memory length. Select from Rectangula		
Math Operators - Functions	Absolute value, Correlation (two wavefo Invert (negate), Log (base e), Log (base	orms), Derivative, Deskew (resample),	Exp (base e), Exp (base 10), Integral,
Math Operators - Other Measurement and Math Integrati	Segment, Sparse On Histograms to display statistical distrib to 1 million measurement parameters.		
Pass/Fail Testing	parameter. Persistence histogram and	persistence trace (mean, range, sigma	a).
	Display up to 12 Pass/Fail queries using <, \leq , =, >, >, within limit $\pm \Delta$ value or %) or In, or Any Out conditions). Combine que True", "Any False", or groups of "All" or "A Hardcopy (send email, save screen ima	Mask Test (pre-defined or user-define eries into a boolean expression to Pas Any", with following THEN Save (wave	ed mask, waveform All In, All Out, Any s or Fail IF "All True", "All False", "Any forms), Stop, Alarm, (send) Pulse,
Display System			
Size	Color 15.3" flat panel TFT-Active Matrix	LCD with high-resolution touch scree	n
Resolution	WXGA; 1280 x 768 pixels		
Number of Traces Grid Styles	Display a maximum of 40 traces. Simul Auto, Single, Dual, Triple, Quad, Octal, X- some software options.		
Waveform Representation	Sample dots joined, or sample dots only	A/	
Processor/CPU	cample dots joined, or sample dots only	y	
Туре	Intel [®] Xeon [®] Gold 6240R 24-core, 48-th	read processor, 2.4 GHz per core (up t	o 4.0 GHz in Turbo mode) or better
Processor Memory	32 GB standard. Up to 192 GB optional	ly available.	
Operating System	Microsoft Windows [®] 10		

Operating System	Microsoft Windows® 10
Oscilloscope Operating Software	Teledyne LeCroy MAUI™ with OneTouch
Real-Time Clock	Date and time displayed with waveform in hardcopy files. SNTP support to synchronize to precision internal clocks.

	LabMaster	LabMaster	LabMaster	LabMaster
	10-20Zi-A	10-25Zi-A	10-30Zi-A	10-36Zi-A
Connectivity				
Ethernet Port	Supports 10/100/1000Base	eT Ethernet interface (RJ45 po	ort)	
USB Host Ports	unit to support Windows co	er Control Module: 1 x USB 2.0 mpatible devices er Control Module: minimum 3		
GPIB Port (Optional)	Supports IEEE-488.2			
External Monitor Port	Dual Link DVI compatible to resolution) and customer-su desktop mode.	support internal display on Mu upplied monitor with up to WQ	CM-Zi Master Control Module XGA (2560 x 1600 pixel) reso	e (1280 x 768 pixel lution using extended
Remote Control	Via Windows Automation, o	r via LeCroy Remote Comman	d Set	
Network Communication Standard	VXI-11 or VICP, LXI Class C (v1.2) compliant		
Power Requirements				
Voltage	Automatic AC Voltage Selec LabMaster MCM-Zi Master Installation Category II	Control Module: 100–240 VAC	2 ±10% at 45-66 Hz; Automati	
Max Power Consumption	LabMaster 10-xxZi-A Acquis LabMaster MCM-Zi-A Maste Each Module and the CPU	sition Module - 1225 W / 1225 er Control Module - 450 W / 45 nas a separate power cord.	VA. 0 VA.	
Environmental				
Temperature (Operating)	+5 °C to +40 °C			
Temperature (Non-Operating)	-20 °C to +60 °C			
Humidity (Operating)		sing) up to +31 °C, upper limit		idensing) at +40 °C
Humidity (Non-Operating)		sing) as tested per MIL-PRF-28	3800F	
Altitude (Operating)	Up to 10,000 ft (3048 m) at	or below +25 °C		
Altitude (Non-Operating)	Up to 40,000 ft (12,192 m)			
Random Vibration (Operating)		minutes in each of three ortho		
Random Vibration (Non-Operating) Functional Shock		minutes in each of three orthouse, 3 shocks (positive and n		agonal avea 10 abaal/a tatal
	20 g peak, han sine, 11 ms p	buise, a shocks (positive and h	egative) in each of three of th	ogonal axes, 18 shocks total
Size and Weight				
Dimensions (HWD)	LabMaster MCM-Zi-A Maste LabMaster 10-xxZi-A Acquis	er Control Module - 10.9""H x 18 sition Module - 8.0""H x 18.2""W	8.2""W x 15.6""D (277 x 462 x / x 26""D (202 x 462 x 660 mr	396 mm), n)
Weight	LabMaster MCM-Zi-A Master LabMaster 10-xxZi-A Acquisi	r Control Module - 47 lbs. (21.4 tion Module -53 lbs. (24.1 kg)	kg),	
Shipping Weight	LabMaster MCM-Zi-A Master LabMaster 10-xxZi-A Acquisi	Control Module - 56 lbs. (25.5 tion Module -71 lbs. (32.3 kg)	kg)	
Certifications				
CE Certification UL and cUL Listing	CE compliant, UL and cUL li CSA C22.2 No. 61010-1-12	sted; conforms to EN 61326, E	EN 61010-1, EN61010-2-030,	UL 61010-1 3rd edition and
Warranty and Service				
<u></u>	3-year warranty; calibration upgrades and calibration se	recommended annually. Optio rvices.	nal service programs include	extended warranty,

	LabMaster 10-50Zi-A	LabMaster 10-59Zi-A	LabMaster 10-65Zi-A
Connectivity		10 052177	
Ethernet Port	Supports 10/100/1000BaseT Ethernet	interface (B 145 port)	
USB Host Ports	LabMaster MCM-Zi -A Master Control A unit to support Windows compatible de LabMaster MCM-Zi -A Master Control M compatible devices	lodule: 1 x USB 2.0 ports, 1 x USB Ty vices	
GPIB Port (Optional)	Supports IEEE-488.2		
External Monitor Port	Dual Link DVI compatible to support into resolution) and customer-supplied mon desktop mode.	ernal display on MCM-Zi Master Cont itor with up to WQXGA (2560 x 1600	rol Module (1280 x 768 pixel pixel) resolution using extended
Remote Control	Via Windows Automation, or via LeCroy	Remote Command Set	
Network Communication Standard	VXI-11 or VICP, LXI Class C (v1.2) comp		
Power Requirements			
Voltage	LabMaster 10-xxZi Acquisition Module: Automatic AC Voltage Selection, Installa LabMaster MCM-Zi Master Control Mod Installation Category II	ation Category II Jule: 100–240 VAC ±10% at 45-66 Hz	
Max Power Consumption	LabMaster 10-xxZi-A Acquisition Modul LabMaster MCM-Zi-A Master Control M Each Module and the CPU has a separa	odule - 450 W / 450 VA.	
Environmental			
Temperature (Operating)	+5 °C to +40 °C		
Temperature (Non-Operating)	-20 °C to +60 °C		
Humidity (Operating)	5% to 80% RH (non-condensing) up to +		l (non-condensing) at +40 °C
Humidity (Non-Operating)	5% to 95% RH (non-condensing) as test		
Altitude (Operating)	Up to 10,000 ft (3048 m) at or below +2	5°C	
Altitude (Non-Operating)	Up to 40,000 ft (12,192 m)		
Random Vibration (Operating)	0.5 grms 5 Hz to 500 Hz, 15 minutes in		
Random Vibration (Non-Operating)	2.4 grms 5 Hz to 500 Hz, 15 minutes in		the second
Functional Shock	20 g peak, half sine, 11 ms pulse, 3 sho	cks (positive and negative) in each of	three orthogonal axes, 18 shocks total
Size and Weight			
Dimensions (HWD)	LabMaster MCM-Zi-A Master Control M LabMaster 10-xxZi-A Acquisition Modul	e - 8.0""H x 18.2""W x 26""D (202 x 46	77 x 462 x 396 mm), 2 x 660 mm)
Weight	LabMaster MCM-Zi-A Master Control M LabMaster 10-xxZi-A Acquisition Modul	odule - 47 lbs. (21.4 kg) e -58 lbs. (24.1 kg)	
Shipping Weight	LabMaster MCM-Zi-A Master Control M LabMaster 10-xxZi-A Acquisition Modul		
Certifications			
CE Certification UL and cUL Listing	CE compliant, UL and cUL listed; confor CSA C22.2 No. 61010-1-12	ms to EN 61326, EN 61010-1, EN610	10-2-030, UL 61010-1 3rd edition and
Warranty and Service			
	3-year warranty; calibration recommend upgrades and calibration services.	led annually. Optional service program	ms include extended warranty,

ORDERING INFORMATION

Product Description

LabMaster 10 Zi-A Series Master Control Modules

LabMaster Master Control Module with 15.3"	LabMaster MCM-Zi-A
WXGA Color Display.	
SDA Master Control Module with 15.3" WXGA Color	SDA MCM-Zi-A
Display (provides add'l standard software and	
64 Mpt/Ch memory)	

LabMaster 10 Zi-A Series Acquisition Modules

20 GHz, 80 GS/s, 4 Ch, 32 Mpts/Ch	LabMaster 10-20Zi-A
LabMaster 10 Zi Acquisition Module	
with 50 Ω input	
25 GHz, 80 GS/s, 4 Ch, 32 Mpts/Ch	LabMaster 10-25Zi-A
LabMaster 10 Zi Acquisition Module	
with 50 Ω input	
30 GHz, 80 GS/s, 4 Ch, 32 Mpts/Ch LabMaster	LabMaster 10-30Zi-A
10 Zi Acquisition Module	
with 50 Ω input	
36 GHz, 80 GS/s, 4 Ch, 32 Mpts/Ch LabMaster	LabMaster 10-36Zi-A
10 Zi Acquisition Module	
with 50 Ω input	
50 GHz, 160 GS/s, 2 Ch, 64 Mpts/Ch	LabMaster 10-50Zi-A
LabMaster 10 Zi Acquisition Module	
with 50 Ω input	
(36 GHz, 80 GS/s, 4 Ch, 32 Mpts/Ch)	
59 GHz, 160 GS/s, 2 Ch, 64 Mpts/Ch	LabMaster 10-59Zi-A
LabMaster 10 Zi Acquisition Module	
with 50 Ω input	
(36 GHz, 80 GS/s, 4 Ch, 32 Mpts/Ch)	
65 GHz, 160 GS/s, 2 Ch, 64 Mpts/Ch	LabMaster 10-65Zi-A
LabMaster 10 Zi Acquisition Module	
with 50 Ω input	
(36 GHz, 80 GS/s, 4 Ch, 32 Mpts/Ch)	

Included with LabMaster MCM-Zi-A Standard Configuration

Power Cable for the Destination Country, Optical 3-button Wheel Mouse USB 2.0, Printed Getting Started Manual, Anti-virus Software (Trial Version), Microsoft Windows 7 License, Commercial NIST Traceable Calibration with Certificate, 3-year Warranty

Included with LabMaster 10-xxZi-A Standard Configuration

2.92mm Connector Saver: Qty. 4, 1.85mm Barrel Adapter: Qty. 2 (50-65 GHz units only), PCIe x 8 cable, 2m long, PCIe x 4 cable, 2m long, Power Cable for the Destination Country, ChannelSync 10 GHz clock cable, 2m long, Commercial NIST Traceable Calibration with Certificate, 3-year Warranty

ChannelSync Expansion Products

ChannelSync Mainframe Hub to permit	LabMaster CMH20-Zi
LabMaster expansion to up to	
20 acquisition modules	
Expansion ChannelSync module card for	LabMaster CMH-1ACQMODULE-Zi
ChannelSync Mainframe Hub.	
One required per connected	
acquisition module	

Memory Options

Memory Options	
64 Mpts/Ch Memory Option for LabMaster 10 Zi	LM10Zi-M-64
Acquisition Modules	
128 Mpts/Ch Memory Option for LabMaster 10 Zi	LM10Zi-L-128
Acquisition Modules	
128 Mpts/Ch Memory Option for LabMaster 10 Zi	SDA10Zi-L-128
Acquisition Modules. Used with SDA MCM-Zi-A	
256 Mpts/Ch Memory Option for LabMaster 10 Zi	LM10Zi-VL-256
Acquisition Modules	
512 Mpts/Ch Memory Option for LabMaster 10 Zi	LM10Zi-XL-512
Acquisition Modules	
512 Mpts/Ch Memory Option for LabMaster 10 Zi	SDA10Zi-XL-512
Acquisition Modules. Used with SDA MCM-Zi-A	

Product Code Product Description

Product Code

CPU, Computer and Other Hardware Options

for LabMaster MCM-Zi-A Master Cont	
Additional 500 GB Hard Drive for MCM-Zi-A	MCMZi-500GB-RHD-02
Upgrade to 128 GB RAM for MCM-Zi-A	MCMZI-32-UPG-128GE
Upgrade to 192 GB RAM for MCM-Zi-A	MCMZI-32-UPG-192GE
GPIB Option for LabMaster MCM-Zi-A	GPIB-3
High-speed Digital Analyzer Systems	
12.5 GS/s High-speed Digital Analyzer with	HDA125-18-SYNC
18ch QuickLink leadset and SYNC connection	
12.5 GS/s High-speed Digital Analyzer with	HDA125-09-SYNC
9ch QuickLink leadset and SYNC connection	1
18 channel QuickLink leadset for HDA125	HDA-DLS-18Q
9 channel QuickLink leadset for HDA125	HDA-DLS-09QI
Ethernet and DDR Debug Toolkits	
100Base-T1 and 1000Base-T1 Debug Toolkit	LM10Zi-AUTO-ENET-TOOLKI
DDR 2/3/4/5 and LPDDR 2/3/4/4X Debug Toolkit	LM10Zi-DDR5-TOOLKI
DDR 2/3/4 and LPDDR 2/3/4/4X Debug Too	Ikit LM10Zi-DDR4-TOOLKI
DDR 2/3 and LPDDR 2/3 Debug Toolkit	LM10Zi-DDR3-TOOLKI
DDR2 and LPDDR2 Debug Toolkit	LM10Zi-DDR2-TOOLKI
Serial Data and Crosstalk Analysis	
Single-Lane Serial Data Analysis Frame-	LM10Zi-SDAI
work, Eye and Jitter Measurements	
Bundle - Multi-Lane SDA LinQ	LM10Zi-SDAIII-CompleteLin(
Framework, including Eye, Jitter, Noise,	SDA10Zi-CompleteLin(
Crosstalk Measurements, with EyeDrII and VirtualProbe	DDA10Zi-CompleteLin(
PCIe 6.0 Transmitter Measurements	LM10Zi-SDAIII-PCIE
PAMx Serial Data Analysis, Eye, Jitter	LM10Zi-SDAIII-PAM
and Noise Measurements	
Signal Integrity Toolkits	
Advanced De-embedding, Emulation and	LM10Zi-VIRTUALPROBI
Virtual Probing Toolkit	
Signal Integrity Toolkit - Channel & Fixture	LM10Zi-EYEDR
De-embedding/Emulation, Tx/Rx Equal-	
ization	
Bundle - EyeDrII and VirtualProbe Toolkits	LM10Zi-EYEDRII-VI
Cable De ombed Ontion	

Modulated Signal Analysis

Cable De-embed Option

inoualatea orginal / inaryoto	
VectorLinQ Advanced Vector Signal Analysis	LM10Zi-VECTORLINQ-ADV
including OFDM	
VectorLinQ - Flexible Vector Signal Analysis	LM10Zi-VECTORLINQ
for electrical signals (RF and baseband I-Q)	

LM10Zi-CBL-DE-EMBED

ORDERING INFORMATION

Product Description	Product Code
CrossSync [™] PHY Software	
CrossSync PHY protocol analyzer	LM10ZI-CROSSSYNC-PHY-PCIe
synchronization Option for PCIe	
CrossSync PHY protocol analyzer	LM10ZI-CROSSSYNC-PHY-USB
synchronization Option for USB and	
Thunderbolt	
Serial Data Compliance	
QualiPHY Enabled MultiGBase-T1 (Automotive	e QPHY-MultiGBase-T1
Ethernet) Compliance Software Option	
QualiPHY Enabled 10Base-T1L (Industrial Ethernet) Compliance Software Option	QPHY-10Base-T1L
QualiPHY Enabled 10Base-T1S (Automotive	OPHY-10Base-T1S
Ethernet) Compliance Software Option	QITTI-TODASE-113
QualiPHY Enabled 10GBase-KR Software Option	on QPHY-10GBase-KR
QualiPHY Enabled 10GBase-T Software Option	n. QPHY-10GBase-T
QualiPHY Enabled 56G PAM4 Compliance	QPHY-56G-PAM4
Software Option	
QualiPHY Enabled LPDDR2 Software Option	QPHY-LPDDR2
QualiPHY Enabled DDR3, DDR3L and LPDDR3	
QualiPHY Enabled DDR4 and LPDDR4/4X Soft	
QualiPHY Enabled DisplayPort 2.0 Source	QPHY-DP20-Source
Software Option (Includes DP 1.4 Source)	
QualiPHY Enabled DisplayPort 1.4 Source Soft	
QualiPHY Enabled DisplayPort 2.0 Sink Softwa	
QualiPHY Enabled Embedded DisplayPort Soft QualiPHY Enabled HDMI 2.1 FRL and TMDS So	
(Includes HDMI 1.4 and HDMI 2.0)	
QualiPHY Enabled HDMI 2.0/1.4 FRL TMDS Sc	
QualiPHY Enabled MIPI C-PHY Compliance Software Option (includes C-PHY DMP)	QPHY-MIPI-CPHY
QualiPHY Enabled MIPI M-PHY Compliance	QPHY-MIPI-MPHY
Software Option	
QualiPHY Enabled PCIe 3.0 Transmitter/Receiv	ver QPHY-PCIE3-Tx-Rx
Compliance Software Option QualiPHY Enabled PCIe 4.0 Transmitter/Receiv	ver OPHY-PCIE4-Tx-Rx
Compliance Software Option	QPHY-PCIE4-1X-RX
OualiPHY Enabled PCIe 5.0 Transmitter/Receiv	ver OPHY-PCIE5-TX-RX
Compliance Software Option	
QualiPHY Enabled PCIe Gen1 Software Option	QPHY-PCIe
QualiPHY Enabled SATA Software Option	QPHY-SATA-TSG-RSG
QualiPHY Enabled SAS-2 Software Option	QPHY-SAS2
QualiPHY Enabled SAS3 Software Option	QPHY-SAS3
QualiPHY Enabled SFI Software Option	QPHY-SFI
QualiPHY Enabled USB4 Tx and Rx Software	
QualiPHY Enabled USB 3.2 Tx and Rx Softwar	re Option QPHY-USB3.2-Tx-Rx
PCI Express, SuperSpeed USB (USB 3.0) and SATA	Complete Hardware/Software Test

PCI Express, SuperSpeed USB (USB 3.0) and SATA Complete Hardware/Software Test Solutions are available. Consult Factory.

Serial Data Test Fixtures

C) TF-USB-C-SB
TF-USB-C-HS
TF-HDMI-3.3V-QUADPAK
TF-USB3
TF-SATA-C-KIT
TF-10GBASE-T
se- TF-AUTO-ENET
TF-AUTO-ENET-SMA
TF-MIPI-MPHY-DUALPAK

Product Code Product Description

Serial Data Triggers and Decoders

Serial Data Triggers and Decoders	
600 Mb/s to 14.1 Gb/s 80-bit NRZ,	LM10ZI-14GBIT-80B-SYMBOL-TD
8b/10b and 64b/66b Serial Trigger. Also	
includes 8b/10b and 64b/66b Decode.	
600 Mb/s to 6.5 Gb/s 80-bit NRZ,	LM10ZI-6GBIT-80B-SYMBOL-TD
8b/10b, 64b/66b Serial Trigger. Also includes 8b/10b and 64b/66b Decode.	
64b/66b Decode Annotation Option	LM10Zi-64b66b D
8b/10b Decode Annotation Option	LM10Zi-8B10B D
CAN FD Decode Option	
	LM10Zi-CAN FDbus D
ENET Decode Option	LM10Zi-ENETbus D
Ethernet 10G Decode Option	LM10Zi-ENET10Gbus D
PCI Express Decode Annotation Option	LM10Zi-PCIEbus D
USB4bus Decode, Measure/Graph, and	LM10Zi-USB4bus DME
Eye Measurements Option USB4-SB Decode, Measure/Graph, and PHY	LM10Zi-USB4SB DMP
Measurement Option	LIVITUZI-USB45B DIVIP
USB4-SB Decode Option	LM10ZI-USB4SB D
USB 3.2 bus D Option (Includes USB2 bus D)	LM10Zi-USB 3.2 bus D
USB-PD (Power Delivery) Decode, Measure/	
Physical Layer Option	
USB-PD Decode Option	LM10ZI-USBPD D
DP-AUX AUX Decode, Measure/Graph, and F	
Layer (Supports all DisplayPort connector ty	
DisplayPort AUX Decode Option	LM10ZI-DPAUX D
USB2-HSIC Decode Option	LM10Zi-USB2-HSICbus D
SATA Decode Annotation Option	LM10Zi-SATAbus D
SAS Decode Annotation Option	LM10Zi-SASbus D
Fibre Channel Decode Annotation Option	LM10Zi-FCbus D
D-PHY Decode Option	LM10Zi-DPHYbus D
DigRF 3G Decode Option	LM10Zi-DigRF3Gbus D
DigRF v4 Decode Option	LM10Zi-DIGRFv4bus D
Audiobus and Decode Option	LM10ZI-DIGREV4bus D
for I ² S, LJ, RJ, and TDM	LIVITUZI-AUDIODUS D
Audiobus, Decode, and Graph Option for I ² S, LJ, RJ, and TDM	LM10Zi-Audiobus DG
Manchester Decode Option	LM10Zi-Manchesterbus D
MDIO Decode Option	LM10Zi-MDIObus D
C-PHY (DSI-2/CSI-2) Decode Option	LM10Zi-CPHYBUS D
C-PHY (DSI-2/CSI-2) Decode Option C-PHY (DSI-2/CSI-2) Decode, Measure/Grap	
	LIVITUZI-CPHYBUS DIVIP
Physical Layer Option MIPI D-PHY Decode Annotation Option	
MIPI D-PHY Decode and Physical Layer Tes	LM10Zi-DPHYbus D
	·
MIPI M-PHY Decode Annotation Option	LM10Zi-MPHYbus D
MIPI M-PHY Decode Annotation and Physic Test Option	al Layer LM10Zi-MPHYbus DP
MIPI UniPro Protocol Decode Option	LM10Zi-UNIPRObus D
SpaceWire Decode Option	LM10Zi-SpaceWirebus D
I ² C Bus and Decode Option	LM10Zi-I2Cbus D
I ³ C Decode, Measure/Graph, and Eye Diagram	
I ³ C Decode Option	LM10ZI-I3CBUS D
SPI Bus and Decode Option	LM10Zi-SPIbus D
SPMI Decode Option	LM10Zi-SPMIbus D
LIN and Decode Option	LM10Zi-LINbus D
UART and RS-232 and Decode Option	LM10Zi-UART-RS232bus D
FlexRay and Decode Option	LM10Zi-FlexRaybus D
FlexRay, Decode, and	LM10Zi-FlexRaybus DP
Physical Layer Test Option	
MIL-STD-1553 Decode Option	LM10Zi-1553 D
ARINC 429 Symbolic Decode Option	LM10Zi-ARINC429bus DSymbolic
Decode Annotation and Protocol Analyzer	LM10Zi-ProtoSync
Synchronization Software Option	
Decode Annotation and Protocol Analyzer	LM10Zi-ProtoSync-BT
Synchronization Software + Bit Tracer Optic SENT Decode Option	LM10Zi-SENTbus D
OLIVI DECOUC OPTION	LIVETUZESLIVEDUS D

Product Code

ORDERING INFORMATION

Product Description

Product Code

General Purpose and Application Specific Software Options

Spectrum Analyzer for LabMaster 10 Zi - 1 trace	LM10Zi-SPECTRUM-1
Spectrum Analyzer for LabMaster 10 Zi -	LM10Zi-SPECTRUM-PRO-2R
2 traces + reference	
MAUI Studio Pro Offline Remote and PC	MAUI Studio Pro
Analysis Software License	
Digital Filter Software Package	LM10Zi-DFP2
Serial Data Mask Software Package	LM10Zi-SDM
Disk Drive Measurements Software Package	LM10Zi-DDM2
Disk Drive Analyzer Software Package	LM10Zi-DDA
Advanced Optical Recording Measurement Packa	age LM10Zi-AORM
EMC Pulse Parameter Software Package	LM10Zi-EMC
Clock Jitter Analysis with Four Views	LM10Zi-JITKIT
Software Package	

Miscellaneous

MCM-Zi-A Rackmount Kit	MCM-Zi-RACKMOUNT
LabMaster 10 Zi-A Acquisition Module	LM10Zi-ACQMOD-RACKMOUNT
Rackmount Kit	

Product Description

Product Code

Probes and Probe Accessories

FIDDES and FIDDE ACCESSORES	
25 GHz differential probe with 2.92mm interface	DH25-2.92MM
30 GHz differential probe with 2.92mm interface	DH30-2.92MM
DH series high-sensitivity solder-in tip, 30 GHz BW, 2.0 Vpp range	DH-SI-HS
DH series solder-in tip, 30 GHz BW, 3.5 Vpp range	DH-SI
DH series high-temperature solder-in tip, 16 GHz BW, 3.5 Vp range	p DH-HITEMP
DH series QuickLink adapter, 8 GHz BW	DH-QL
DH series QuickLink adapter kit with 3 x QL-SI tips	DH-QL-3SI
DH series PT browser tip, 16 GHz BW, 3.5 Vpp range	DH-PT
WaveLink 13 GHz, 2.0 Vp-p Differential Probe System	D1305-A-PS
WaveLink 16 GHz, 2.0 Vp-p Differential Probe System	D1605-A-PS
WaveLink 20 GHz, 2.0 Vp-p Differential Probe System	D2005-A-PS
WaveLink 25 GHz, 2.0 Vp-p Differential Probe System	D2505-A-PS
Power/Voltage Rail Probe 4 GHz, 1.2x, ±30V offset, ±800mV dynamic range	RP4030
RP2060/RP4060 Browser Tip accessory. Includes 0 Ohm (1x), 450 Ohm (10x) and 950 Ohm (20x) tips.	RP4000-BROWSER
Qty 3 MCX 4 GHz solder-in lead accessories (additional RI to those supplied with rail probe) 18cm long	P4000-MCX-LEAD-SI
2.92mm to ProLink Adapter with probe power and communications pass through	L2.92A-PLINK
2.92mm to ProBus Adapter with probe power and communications pass through	L2.92A-PBUS

Customer Service

Teledyne LeCroy oscilloscopes and probes are designed, built and tested to ensure high reliability. In the unlikely event you experience difficulties, our digital oscilloscopes are fully warranted for three years and our probes are warranted for one year. This warranty includes:

- No charge for return shipping
- Long-term 7-year support
- Upgrade to latest software at no charge

1-800-5-LeCroy teledynelecroy.com

Local sales offices are located throughout the world. Visit our website to find the most convenient location.

© 2023 by Teledyne LeCroy, Inc. All rights reserved. Specifications, prices, availability, and delivery subject to change without notice. PCI Express[®] is a registered trademark and/or service mark of PCI-SIG.

USB4® and USB Type-C® are registered trademarks and/or service marks of USB-IF. MATLAB® is a registered trademark of The MathWorks, Inc. All other product or brand names are trademarks or requested trademarks of their respective holders.