The 5322A Electrical Safety Tester Calibrator helps calibration technicians comply with new regulatory standards up to four times faster than with traditional manual, multiple-product methods.

The 5322A facilitates compliance with exacting international standards such as the United Kingdom’s BS7671 17th Edition, IEC/EN Standards, Australia and New Zealand’s AS/NZS 3000, and Chinese verification/calibration regulations for various electrical testers.

The 5322A combines many functions into a single instrument, replacing discrete resistors, decade boxes and other custom solutions commonly used to calibrate electrical testers. This single-box solution speeds and simplifies calibration because users only need to learn, operate and maintain one calibrator rather than multiple instruments. And while it's difficult to automate multiple testers, the 5322A can be automated with MET/CAL® Calibration Software—further increasing speed and throughput.

Workload includes insulation resistance testers; leakage current testers; multifunction installation testers; portable appliance testers (PATs); continuity testers and earth (ground) resistance testers; loop/line impedance testers and ground bond testers; residual-current device (RCD) or ground fault current interrupter (GFCI) testers; and hipot testers.
Maximize workload coverage in a quarter of the time

The Fluke Calibration 5322A Electrical Safety Tester combines many functions into a single instrument, replacing discrete resistors, decade boxes and other custom solutions commonly used to calibrate electrical safety testers. It’s flexible and precise enough to calibrate a wide range of instrumentation, and fast enough to handle the job in a quarter of the time you spend on manual multi-product methods.

Insulation resistance testers

The 5322A calibrator sources high-value, high-voltage resistors and measures the high voltage output of megohm meters and other portable and bench insulation testers. When calibrating insulation resistance testers up to 5 kV you can select a wide range of continuously variable resistance values, from 10 kΩ to 100 GΩ with 4.5-digit resolution. When calibrating 10 kV insulation testers, the included R-multiplier extends these ranges to 10 TΩ and 10 kV. The included 10 kV divider measures testers to 10 kV with greater precision than the 40 kV probe, insuring you get the TUR you need for these tests.

Leakage current testers

Simulate a leakage current for direct/touch, differential and substitute leakage current methods with 10 µA resolution from 0.1 mA to 30 mA. The 5322A lets you choose the leakage current test method that works best for your situation, unlike other calibrators that only offer a single method.

Multifunction installation testers

The 5322A makes quick work of these multifunction installation testers with the flexibility to calibrate insulation resistance, continuity, loop impedance, RCD and earth resistance tester capabilities. This means that calibrations are completed with one instrument.

Portable appliance testers (PATs)

The 5322A has all the functionality needed to calibrate PATs, with insulation resistance, ground bond, leakage current RCD, flash voltage and load test capabilities.

Continuity testers and earth (ground) resistance testers

To calibrate these low ohms testers, a calibrator must be able to source precision low ohms. From its low ohms precision resistors, the 5322A calibrator sources resistance values ranging from 100 mΩ to 10 kΩ, with 3.5 digits of resolution. Choose 2-wire or 4-wire modes for maximum flexibility or a discrete 4-wire 10 mΩ resistor to cover even more workload.

Loop/line impedance testers and ground bond testers

The 5322A calibrator has 16 high-power, high-current resistors it can source to increase the resistance of a loop or line by a known amount. Use Scan mode to automatically determine the resistance of the loop, and use Active Loop Compensation mode (5322A/VLC) to compensate for any residual impedance in the loop or line. Ground bond resistance outputs are either 2-wire or 4-wire. The lowest 4-wire output is 1 mΩ.

Residual-current device (RCD) or ground fault current interrupter (GFCI) testers

The 5322A simulates a circuit breaker (an RCD/GFCI) to verify and calibrate trip current and trip time, without tripping the installation’s current breakers. For most RCD testers, trip times are calculated to an uncertainty of 0.25 ms, to provide better than 4:1 test uncertainty ratios (TUR) in many applications. Trip current uncertainty is 1 %, which also provides better than 4:1 TURs in most applications. The 5322A also has a special PAT RCD mode to calibrate the RCD function of those testers.

Hipot testers

Electrical safety testing with hipots is an integral part of development and manufacturing of electronic and electrical products, ranging from refrigerators to power supplies. Such testing is often required by government regulations to ensure product safety.

The 5322A provides best-in-class hipot calibration of ac and dc voltage. The built-in meter measures voltage and current for voltages up to 5 kV. The 5 kV range also measures hipot ripple coefficient and total harmonic distortion (THD). For voltages over 5 kV the included 10 kV divider accessory or optional characterized 40 kV probe can be used. The 10 kV divider measures voltages to 10 kV with 0.5% uncertainty.

For measurement of hipot current up to 100 mA, Fluke Calibration offers a load adapter accessory. Use the load adapter in conjunction with the 5322A built-in current meter for full calibration of hipots.
The MET/CAL® software advantage

The 5322A calibrator works with Fluke Calibration MET/CAL Calibration Software, in 5320A emulation mode, allowing you to increase throughput up to four times that of traditional manual and multi-product methods while ensuring calibrations are performed consistently every time. This powerful software documents calibration procedures, processes and results for ease in complying with ISO 17025 and similar quality standards.

The support you need, when you need it

Fluke calibrators are known for their accuracy and reliability. Fluke operates global calibration and repair facilities to keep your equipment in top working order. Reduce your calibrator downtime and control your cost of ownership with a priority Gold CarePlan service package*. Fluke Calibration offers CarePlans, which feature an annual standard or accredited calibration of your 5322A calibrator with guaranteed turnaround and no cost for repairs.

* CarePlans are not available in all countries. Please check with your local Fluke Calibration sales representative for calibration services in your area.
Flexible choices to calibrate your electrical tester workload

Multiple model choices for the 5322A give you the flexibility to select the features best suited to your lab’s workload. The base 5322A model offers 1.5 kV high resistance sourcing.

The 5322A/5 offers 5 kV high voltage resistor sourcing to handle the growing population of high voltage based safety testers.

To either model, add active loop compensation and a 600 V precision ac/dc output source for calibrating the voltage measurement function of DUTs. You can also add a characterized 40 kV probe accessory for making precision measurements of very high voltages to 0.5% accuracy.

Included accessories offer additional flexibility

Each 5322A comes with an external R-Multiplier to source resistances of up to 10 TΩ for testing insulation testers to 10 kV. A RCD-PAT and PAT-LOAD adapter are also included for safe secure connections to the 5322A for your specific regional electrical appliance plug and socket type.

Also included is an external 10 kV divider to measure testers with 10 kV outputs, to meet more stringent test accuracy ratios required by some regulations.

This broad range of model options put you in control of selecting the right model to match your workload and your budget.
Optional S322A-LOAD

An optional S322A-LOAD 5 kV high resistance load option is available with 5 kV high voltage resistors to allow direct connection to hipots for leakage tests. This S322A-LOAD is unique in that it not only supports 5 kV but has nine high voltage resistors, ranging from 10 kΩ to 10 MΩ, that can be combined in parallel, within voltage limits, to obtain more precise results.

Calibrate all major types of electrical safety testers with just one calibrator

The S322A calibrates all major categories of electrical safety testers. The benefits of this calibrator are best described by the key functionality it brings to calibrating the individual workloads below.

Broad workload coverage

The S322A calibrates a broad range of equipment, including:

- Hipot testers
- Insulation resistance testers (megohm-meters) including older analog testers
- Loop/line impedance testers
- Continuity testers
- Earth resistance testers
- Ground bond testers
- Leakage current testers
- Circuit breaker testers (RCD/GFCI)
- Multifunction installation testers
- Portable appliance testers (PATs)

Electrical plug and socket adapters, RCD PAT Adapter and PAT LOAD Adapter are included with the S322A to help ensure safe connections.
A. **Large, bright full color display**
Large readouts enable you to easily read the primary sourced or measured values. Sourced values are in blue and measured values are in red.

B. **Active terminal display**
Always know which calibrator terminals are active. When a function has been selected, the graphical display shows the active terminals.

C. **Soft menu keys**
Soft menu keys adapt to the active function, so the menu structure is intuitive and easy to learn.

D. **Output jog wheel, numeric keyboard**
To select an output value or measurement range, use the numeric keypad or rotary jog wheel.

E. **Graphical help guide**
Find out what connections to make in an easy-to-understand graphical format. The help guide is available through the Mode softkey.

F. **Spec readout**
The spec readout lets you view the uncertainty of the sourced or measured primary value.

G. **IEEE 488 and USB communication**
GPIB and USB connectors
Makes it convenient to connect the 5322A to your PC for automation and data exchange.
5322A Electrical Safety Tester key features and benefits

Continuously variable high voltage resistance outputs
Source high-ohms, high voltage resistors to enable calibration of insulation resistance testers / megohmeters up to 5 kV. The continuously variable feature lets the user set any resistance value to match the DUT requirement and adjust the 5322A output to a nominal value, which aids in calibrating older-style hand-cranked testers.

Active Loop Compensation
Makes it easier to calibrate the loop/line impedance function of an installation tester by canceling residual line impedance during calibrations.

600 V source (VLC option)
Allows calibration of ac voltage measurements on workloads with measurement capabilities. This feature is also useful for powering many types of PAT testers.

4-wire low resistance sources
Enable precision low current measurements and high current ground bond measurements, providing accuracy for testing newer 4-wire testers.

RCD simulation
Enables testing of installation and PAT testers with high time and current level accuracy. 5322A trip times provide better than 4:1 test uncertainty ratios with 1 % trip current uncertainty.

Ripple coefficient and THD measurements
Display hipot testers’ signal purity measurements to 5 kV as required by many regulations.

Multiple models
Give you the flexibility to select the capabilities best suited to your workload and budget.

MET/CAL® software compatibility
Automates the 5322A in 5320A emulation mode for improved throughput and greater consistency.
Specifications

General specifications
Specifications confidence level .. 99 %
Specifications interval .. 1 year
Power line .. 115/230 V ac (50/60 Hz) +10 % / -14 %, with the maximum voltage difference between neutral and protective earth not exceeding 15 V. Operation with power line between -10 % and -14 % has limitations in burden current for voltage outputs. See AC/DC Voltage Calibrator (VLC option) below.

Power consumption .. 1250 VA maximum
Fuse protection
AC mains input .. 2 A, 250 V for 230 V, time delay (T2L250 V – 5 mm x 20 mm) 4 A, 250 V for 115 V, time delay (T4L250 V – 5 mm x 20 mm)
RCD input ... 3.15 A, 250 V, fast (F3.15H250 V – 5 mm x 20 mm)
Meter amps (A) input .. 20 A, 500 V, time delay (F20H500 V – 6.3 mm x 32 mm)
Loop/Line impedance input ... 4 A, 500 V, time delay (T4H500 V – 6.3 mm x 32 mm)
Leakage current input ... 100 mA, 250 V, fast (F100 mL250 V – 5 mm x 20 mm)

Environment
Warm-up time .. 15 minutes
Temperature performance
Operating temperature ... 18 °C to 28 °C
Calibration temperature (tcal) ... 23 °C
Temperature coefficient for temperatures outside of tcal ± 5 °C is 0.1 °C of the specification, for temperatures between 5 °C to 40 °C.
Storage temperature .. -10 °C to 50 °C
Storage recovery time ... Typically <24 hours at operating temperature
Relative humidity (operating) ... <80 % to 28 °C (resistance outputs >10 GΩ specified for <70 % to 28 °C)
Relative humidity (storage) ... <90 % non-condensing 0 °C to 50 °C
Altitude
Operating ... 3050 m (10 000 ft)
Storage ... 12 200 m (40 000 ft)

Dimensions and weight
Dimensions ... 430 mm x 555 mm x 170 mm (16.9 in x 21.8 in x 6.7 in)
Weight ... 20 kg (44.1 lb)

Compliance
Safety
Mains ... IEC 61010–1: Overvoltage category II, pollution degree 2
Measurement ... IEC 61010–2–030: 5000 V (not category rated)
Electromagnetic compatibility (EMC)
International .. IEC 61326–1: Basic electromagnetic environment
CISPR 11: Group 1, Class A
Group 1: Equipment has intentionally generated and/or uses conductively-coupled radio frequency energy that is necessary for the internal function of the equipment itself.
Class A: Equipment is suitable for use in all establishments other than domestic and those directly connected to a low-voltage power supply network that supplies buildings used for domestic purposes. There may be potential difficulties in ensuring electromagnetic compatibility in other environments due to conducted and radiated disturbances. Emissions that exceed the levels required by CISPR
Korea (KCC) .. Class A equipment (industrial broadcasting & communication equipment)
Class A: Equipment meets requirements for industrial electromagnetic wave equipment and the seller or user should take notice of it. This equipment is intended for use in business environments and not to be used in homes.
USA (FCC) .. 47 CFR 15 subpart B. This product is considered an exempt device per clause 15.103
Electrical specifications

Low resistance source
Range... 100 mΩ to 10 kΩ + 10 mΩ single value selection, dc and line frequency (50/60 Hz)
Setting resolution .. 3.5 digits (continuously variable)
Range of lead resistance compensation.............. 0 Ω to 2.000 Ω

Uncertainty and maximum ratings

<table>
<thead>
<tr>
<th>Range</th>
<th>Resistance source (output)</th>
<th>Maximum AC rms or DC current [1]</th>
<th>2-wire uncertainty [1][2] (tcal ±5 °C)</th>
<th>4-wire uncertainty (tcal ±5 °C) [3]</th>
<th>Uncertainty ± (% reading + mA)</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mΩ [4]</td>
<td>-</td>
<td>1000 mA</td>
<td>-</td>
<td>1 % [3]</td>
<td>10 % + 10</td>
<td>10 mA</td>
</tr>
<tr>
<td>100 mΩ to 0.199 Ω</td>
<td>0.1 mΩ</td>
<td>700 mA</td>
<td>0.3 % + 50 mΩ</td>
<td>0.3 % + 10 mΩ</td>
<td>10 % + 10</td>
<td>1 mA</td>
</tr>
<tr>
<td>0.200 Ω to 0.499 Ω</td>
<td>1 mΩ</td>
<td>700 mA</td>
<td>0.3 % + 50 mΩ</td>
<td>0.3 % + 10 mΩ</td>
<td>10 % + 10</td>
<td>1 mA</td>
</tr>
<tr>
<td>0.500 Ω to 1.999 Ω</td>
<td>1 mΩ</td>
<td>700 mA</td>
<td>0.3 % + 50 mΩ</td>
<td>0.3 % + 10 mΩ</td>
<td>2 % + 10</td>
<td>1 mA</td>
</tr>
<tr>
<td>2.00 Ω to 4.99 Ω</td>
<td>1 mΩ</td>
<td>700 mA</td>
<td>0.3 % + 50 mΩ</td>
<td>0.3 % + 10 mΩ</td>
<td>2 % + 10</td>
<td>1 mA</td>
</tr>
<tr>
<td>5 Ω to 29.9 Ω</td>
<td>0.01 Ω</td>
<td>250 mA</td>
<td>0.2 % + 50 mΩ</td>
<td>0.2 % + 10 mΩ</td>
<td>0.2 % +1.0</td>
<td>1 mA</td>
</tr>
<tr>
<td>30 Ω to 199.9 Ω</td>
<td>0.1 Ω</td>
<td>100 mA</td>
<td>0.2 % + 50 mΩ</td>
<td>0.2 % + 10 mΩ</td>
<td>0.2 % +0.5</td>
<td>0.1 mA</td>
</tr>
<tr>
<td>200 Ω to 499 Ω</td>
<td>1 Ω</td>
<td>45 mA</td>
<td>0.2 %</td>
<td>0.2 %</td>
<td>0.2 % +0.2</td>
<td>0.1 mA</td>
</tr>
<tr>
<td>500 Ω to 1.999 kΩ</td>
<td>1 Ω</td>
<td>25 mA</td>
<td>0.2 %</td>
<td>0.2 %</td>
<td>0.2 % +0.1</td>
<td>0.1 mA</td>
</tr>
<tr>
<td>2 Ω to 4.99 kΩ</td>
<td>10 Ω</td>
<td>10 mA</td>
<td>0.2 %</td>
<td>0.2 %</td>
<td>0.2 % +0.1</td>
<td>0.1 mA</td>
</tr>
<tr>
<td>5 kΩ to 10 kΩ</td>
<td>10 Ω</td>
<td>5 mA</td>
<td>0.2 %</td>
<td>0.2 %</td>
<td>0.2 % +0.1</td>
<td>0.1 mA</td>
</tr>
</tbody>
</table>

[1] Test current can exceed 120 % of maximum current for up to 3 seconds. Terminals automatically disconnect if test current exceeds 120 % of specified maximum current.
[2] 2-Wire outputs are calibrated to the plane of the front panel terminals.
[3] Uncertainty is valid to 200 mW. For higher power rating, add 0.1 % per each 300 mW above 200 mW.
[4] Range is 4-wire only, 10 mΩ nominal, actual calibrated value is displayed. Calibration value uncertainty is specified in the table.

Test current measurement

Range... 0 mA to 1000 mA (ac + dc) rms

Short mode
Nominal resistance in 2-wire................................. <100 mΩ
Maximum current.. 1000 mA (ac + dc) rms

Open mode
Nominal resistance.. 30 MΩ ± 20 %
Maximum input voltage allowed.................... 50 V (ac + dc) rms
Test voltage reading.. 0 V to 50 V (ac + dc) rms
Resolution... 1 V
Uncertainty.. ± (5 % + 2 V)

Lead resistance simulation (4-wire mode)
Nominal resistance.. 500 Ω, 1 kΩ, 2 kΩ, 5 kΩ ± 2 %, inserted as pairs. One resistor of the pair is in series with the LO-OHM Hi terminal, and the other resistor is in series with LO-OHM Hi sense terminal

1.5 kV high resistance source (DC only)
Range... 10 kΩ to 10 GΩ + 100 GΩ single value selection
Resolution... 4.5 digit (continuously variable for 10 kΩ to 10 GΩ range)
Uncertainty and maximum ratings

<table>
<thead>
<tr>
<th>Range</th>
<th>Resistance source (output)</th>
<th>Test voltage measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Resolution</td>
<td>Maximum voltage dc</td>
</tr>
<tr>
<td>10.000 to 19.999 kΩ</td>
<td>1 Ω</td>
<td>55 V</td>
</tr>
<tr>
<td>20.00 to 39.99 kΩ</td>
<td>10 Ω</td>
<td>55 V</td>
</tr>
<tr>
<td>40.00 to 99.99 kΩ</td>
<td>10 Ω</td>
<td>400 V</td>
</tr>
<tr>
<td>100.00 to 199.99 kΩ</td>
<td>10 Ω</td>
<td>800 V</td>
</tr>
<tr>
<td>200.0 to 999.9 kΩ</td>
<td>100 Ω</td>
<td>1100 V</td>
</tr>
<tr>
<td>1.000 to 1.999 MΩ</td>
<td>100 kΩ</td>
<td>1150 V</td>
</tr>
<tr>
<td>2.000 to 9.999 MΩ</td>
<td>1 kΩ</td>
<td>1150 V</td>
</tr>
<tr>
<td>10.000 to 19.999 MΩ</td>
<td>1 kΩ</td>
<td>1575 V</td>
</tr>
<tr>
<td>20.00 to 199.99 MΩ</td>
<td>10 kΩ</td>
<td>1575 V[^3]</td>
</tr>
<tr>
<td>200.0 to 999.9 MΩ</td>
<td>100 kΩ</td>
<td>1575 V[^3]</td>
</tr>
<tr>
<td>1.0000 to 1.9000 GΩ</td>
<td>100 kΩ</td>
<td>1575 V[^3]</td>
</tr>
<tr>
<td>2.000 GΩ to 10.000 GΩ</td>
<td>1 MΩ</td>
<td>1575 V[^3]</td>
</tr>
<tr>
<td>100 GΩ</td>
<td>-</td>
<td>1575 V[^3]</td>
</tr>
</tbody>
</table>

[^1] Uncertainty is valid up to 500 V. For test voltages above 500 V, add 0.1 % for each 200 V above 500 V.

[^2] Uncertainty is valid for relative humidity RH ≤50 %. For operation at ambient RH in the range 50 % to 80 % and resistance output values 100.0 MΩ to 9.99 GΩ, add 0.02 x specified uncertainty / % RH. For resistance output values 10.00 GΩ to 100.0 GΩ, add 0.05 x specified uncertainty / % RH up to 70 %.

[^3] Maximum test voltage with the supplied banana leads is 1000 Vrms. For higher voltages, use leads rated at 1575 V or above.

[^4] Calibrated value uncertainty is specified in the table. Nominal value is ± 15 %.

Test voltage measurement

- **Range**: 1200 V dc in resistance range from 10 kΩ to 1 MΩ
- **Settling time**: 2 seconds for input deviations of <5 %

Test current measurement

- **Range**: 0 mA dc to 9.9 mA dc
- **Uncertainty**: ± (1.5 % + V/R A), where R is the selected resistance value
- **Settling time**: 2 seconds (for voltage reading deviations <5 %)

Short mode

- **Nominal resistance**: < 250 Ω
- **Maximum input current allowed**: 50 mA dc
- **Resolution**: 0.1 mA
- **Uncertainty**: ± (2 % + 0.5 mA)

Open mode

- **Nominal resistance**: 100 GΩ ± 15 %
- **Maximum input voltage allowed**: 1575 V dc
- **Test voltage range**: 0 V dc to 2000 V dc
- **Resolution**: 0.1 V
- **Uncertainty**: ± (1 % + 1 V)
Resistance multiplier adapter (x1000 multiplier)
Resistance range: 350 MΩ to 10 TΩ

Uncertainty and maximum ratings

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
<th>Maximum voltage DC</th>
<th>Uncertainty (tcal ± 5 °C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>350.0 MΩ to 99.99 GΩ</td>
<td>100 kΩ</td>
<td>10000 V</td>
<td>±(1.0 % + R[1])</td>
</tr>
<tr>
<td>100.00 GΩ to 999.9 GΩ</td>
<td>10 MΩ</td>
<td>10000 V</td>
<td>±(2.0 % + R[1])</td>
</tr>
<tr>
<td>1.0000 TΩ to 10.000 TΩ</td>
<td>100 MΩ</td>
<td>10000 V</td>
<td>±(3.0 % + R[1])</td>
</tr>
</tbody>
</table>

[1] R is the uncertainty of the 5322A resistance value to be multiplied by 1000.

5.5 kV high resistance source (DC only) (5322A with /5 option)
Range: 10 kΩ to 100 GΩ
Resolution: 4.5 digit (continuously variable)

Uncertainty and maximum ratings

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution source (output)</th>
<th>Test voltage measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Resolution</td>
<td>Maximum voltage dc</td>
</tr>
<tr>
<td>10.000 to 19.999 kΩ</td>
<td>1 Ω</td>
<td>65 V</td>
</tr>
<tr>
<td>20.00 to 39.99</td>
<td>10 Ω</td>
<td>65 V</td>
</tr>
<tr>
<td>40.00 to 99.99 kΩ</td>
<td>10 Ω</td>
<td>400 V</td>
</tr>
<tr>
<td>100.00 to 199.99 kΩ</td>
<td>10 Ω</td>
<td>800 V</td>
</tr>
<tr>
<td>200.0 to 999.9 kΩ</td>
<td>100 Ω</td>
<td>1100 V</td>
</tr>
<tr>
<td>1.000 to 1.999 MΩ</td>
<td>1 Ω</td>
<td>1575 V</td>
</tr>
<tr>
<td>2.000 to 9.999 MΩ</td>
<td>1 kΩ</td>
<td>2500 V</td>
</tr>
<tr>
<td>10.000 to 19.999 MΩ</td>
<td>1 kΩ</td>
<td>5500 V [3]</td>
</tr>
<tr>
<td>20.00 to 199.99 MΩ</td>
<td>10 kΩ</td>
<td>5500 V [3]</td>
</tr>
<tr>
<td>200.0 to 999.9 MΩ</td>
<td>100 kΩ</td>
<td>5500 V [3]</td>
</tr>
<tr>
<td>1.0000 to 1.9999 GΩ</td>
<td>1 kΩ</td>
<td>5500 V [3]</td>
</tr>
<tr>
<td>2.000 to 9.999 GΩ</td>
<td>1 MΩ</td>
<td>5500 V [3]</td>
</tr>
<tr>
<td>10.000 GΩ to 19.999 GΩ</td>
<td>1 MΩ</td>
<td>5500 V [3]</td>
</tr>
<tr>
<td>20.000 to 100.000 GΩ</td>
<td>10 kΩ</td>
<td>5500 V [3]</td>
</tr>
</tbody>
</table>

[1] Uncertainty is valid to 3000 V. For test voltages above 3000 V, add 0.1 % for each 1000 V above 3000 V in range 10.00 MΩ to 999 MΩ and 0.3 % in range 1.000 GΩ to 100.0 GΩ.
[2] Uncertainty is valid for relative humidity RH ≤50 %. For operation at ambient RH in the range 50 % to 80 % and resistance output values 100.0 MΩ to 9.99 GΩ, add 0.02 x specified uncertainty/ % RH. For resistance output values 10.00 GΩ to 100.0 GΩ, add 0.05 x specified uncertainty / % RH up to 70 %.
[3] Maximum test voltage with the supplied banana lead is 5000 Vrms. For higher voltages, use leads rated at ≥5000 V.

Test voltage measurement
Range: 0 V dc to 5500 V dc
Test voltage indication: 4 digit voltmeter with range:
1200 V dc in resistance range 10.00 kΩ to 1.000 MΩ
2600 V dc in resistance range 1.000 MΩ to 10.00 MΩ
5500 V dc in resistance range 10.00 MΩ to 100.0 GΩ

Settling time: 2 seconds for input deviations of <5 %

Test current measurement
Range: 0 mA dc to 9.9 mA dc
Uncertainty: ±(1.5 % + 5V/R A), where R is the selected resistance value
Settling time: 2 seconds (for voltage reading deviations <5 %)
Short mode

Nominal resistance:
\(<250 \, \Omega\)

Maximum input current allowed:
\(50 \, mA \, dc\)

Test current range:
\(0 \, mA \, dc \, to \, 50 \, mA \, dc\)

Resolution:
\(0.1 \, mA\)

Uncertainty:
\(\pm (2 \% + 0.5 \, mA)\)

Open mode

Nominal resistance:
\(100 \, G\Omega \pm 15 \%\)

Maximum input voltage allowed:
\(5500 \, V \, dc\)

Test voltage range:
\(0 \, Vpk \, to \, 5500 \, V \, dc\)

Resolution:
\(0.1 \, V \leq 400 \, V \, input, \, 1 \, V > 400 \, V \, input\)

Uncertainty:
\(0.5 \% + 10 \, V\)

Ground bond resistance source

Resistance mode

Range:
\(1 \, m\Omega \, to \, 1700 \, \Omega, \, dc \, and \, line \, frequency \, (50/60 \, Hz)\).

Resolution:
\(17 \, discrete \, values\)

Test current measurement range:
\(0 \, A \, to \, 30 \, A \, (ac + dc) \, rms\)

Test current measurement resolution:
\(0.01 \, mA \, to \, 10 \, mA \, depending \, on \, resistance \, output \, and \, test \, current\)

Range of lead resistance compensation:
\(0 \, \Omega \, to \, 2.000 \, \Omega\)

Uncertainty and maximum ratings

<table>
<thead>
<tr>
<th>2-wire nominal value</th>
<th>4-wire nominal value</th>
<th>Resistance source (output)</th>
<th>2-wire absolute uncertainty of characterized value (t_cal ± 5 °C)</th>
<th>4-wire absolute uncertainty of characterized value (t_cal ± 5 °C)</th>
<th>Range/ resolution</th>
<th>Uncertainty (lo, hi) ± (% reading + mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mΩ</td>
<td>± 20 %</td>
<td></td>
<td>3 A 30 A</td>
<td>± 0.2 mΩ</td>
<td>4 A/1 mA 40 A/10 mA</td>
<td>1 % + 12 1 % + 120</td>
</tr>
<tr>
<td>20 mΩ</td>
<td>14 mΩ</td>
<td>± 50 %</td>
<td>3 A 30 A</td>
<td>± 8 mΩ</td>
<td>4 A/1 mA 40 A/10 mA</td>
<td>1 % + 12 1 % + 120</td>
</tr>
<tr>
<td>50 mΩ</td>
<td>39 mΩ</td>
<td>± 50 %</td>
<td>2.8 A 28 A</td>
<td>± 8 mΩ</td>
<td>4 A/1 mA 40 A/10 mA</td>
<td>1 % + 12 1 % + 120</td>
</tr>
<tr>
<td>100 mΩ</td>
<td>94 mΩ</td>
<td>± 30 %</td>
<td>2.8 A 25 A</td>
<td>± 8 mΩ</td>
<td>4 A/1 mA 40 A/10 mA</td>
<td>1 % + 12 1 % + 120</td>
</tr>
<tr>
<td>350 mΩ</td>
<td>340 mΩ</td>
<td>± 20 %</td>
<td>1.4 A 14 A</td>
<td>± 8 mΩ</td>
<td>4 A/1 mA 40 A/10 mA</td>
<td>1 % + 12 1 % + 120</td>
</tr>
<tr>
<td>500 mΩ</td>
<td>490 mΩ</td>
<td>± 10 %</td>
<td>1.2 A 12 A</td>
<td>± 8 mΩ</td>
<td>4 A/1 mA 40 A/10 mA</td>
<td>1 % + 12 1 % + 120</td>
</tr>
<tr>
<td>960 mΩ</td>
<td>960 mΩ</td>
<td>± 10 %</td>
<td>0.8 A 8 A</td>
<td>± 10 mΩ</td>
<td>4 A/1 mA 40 A/10 mA</td>
<td>1 % + 12 1 % + 120</td>
</tr>
<tr>
<td>1.7 Ω</td>
<td>1.7 Ω</td>
<td>± 10 %</td>
<td>0.6 A 6 A</td>
<td>± 13 mΩ</td>
<td>4 A/1 mA 30 A/10 mA</td>
<td>0.3 % + 9 0.3 % + 90</td>
</tr>
<tr>
<td>4.7 Ω</td>
<td>4.7 Ω</td>
<td>± 10 %</td>
<td>0.32 A 3.2 A</td>
<td>± 30 mΩ</td>
<td>2.1 A/1 mA 21 A/10 mA</td>
<td>0.3 % + 7 0.3 % + 70</td>
</tr>
<tr>
<td>9 Ω</td>
<td>9 Ω</td>
<td>± 10 %</td>
<td>0.2 A 2 A</td>
<td>± 50 mΩ</td>
<td>1.5 A/1 mA 15 A/10 mA</td>
<td>0.3 % + 4 0.3 % + 40</td>
</tr>
<tr>
<td>17 Ω</td>
<td>17 Ω</td>
<td>± 10 %</td>
<td>0.15 A 1.5 A</td>
<td>± 90 mΩ</td>
<td>1 A/1 mA 10 A/10 mA</td>
<td>0.3 % + 3 0.3 % + 30</td>
</tr>
<tr>
<td>Resistance</td>
<td>Deviation from nominal value</td>
<td>Absolute uncertainty of characterized value (tcal ± 5 °C)</td>
<td>Maximum continuous test current AC rms or DC[1]</td>
<td>Maximum short-term test current AC rms or DC[2]</td>
<td>Test current uncertainty ±(% reading + mA)</td>
<td>Test current resolution</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>------------------------</td>
</tr>
<tr>
<td>20 mΩ</td>
<td>± 50 %</td>
<td>± 8 mΩ ± 12 mΩ</td>
<td>30 A</td>
<td>40 A</td>
<td>1.5 % + 0.7 A</td>
<td>100 mA</td>
</tr>
<tr>
<td>50 mΩ</td>
<td>± 50 %</td>
<td>± 8 mΩ ± 12 mΩ</td>
<td>28 A</td>
<td>40 A</td>
<td>1.5 % + 0.5 A</td>
<td>100 mA</td>
</tr>
<tr>
<td>90 mΩ</td>
<td>± 30 %</td>
<td>± 8 mΩ ± 12 mΩ</td>
<td>25 A</td>
<td>40 A</td>
<td>1.5 % + 0.35 A</td>
<td>100 mA</td>
</tr>
<tr>
<td>350 mΩ</td>
<td>± 20 %</td>
<td>± 8 mΩ ± 14 mΩ</td>
<td>14 A</td>
<td>40 A</td>
<td>1.5 % + 0.3 A</td>
<td>100 mA</td>
</tr>
<tr>
<td>500 mΩ</td>
<td>± 10 %</td>
<td>± 8 mΩ ± 15 mΩ</td>
<td>12 A</td>
<td>40 A</td>
<td>1.5 % + 0.2 A</td>
<td>100 mA</td>
</tr>
<tr>
<td>0.96 Ω</td>
<td>± 10 %</td>
<td>± 10 mΩ ± 20 mΩ</td>
<td>8 A</td>
<td>40 A</td>
<td>1.5 % + 150 mA</td>
<td>10 mA</td>
</tr>
<tr>
<td>1.7 Ω</td>
<td>± 10 %</td>
<td>± 13 mΩ ± 25 mΩ</td>
<td>6 A</td>
<td>30 A</td>
<td>1.5 % + 100 mA</td>
<td>10 mA</td>
</tr>
<tr>
<td>5 Ω</td>
<td>± 10 %</td>
<td>± 30 mΩ ± 37 mΩ</td>
<td>3.2 A</td>
<td>21 A</td>
<td>1.5 % + 70 mA</td>
<td>10 mA</td>
</tr>
<tr>
<td>9 Ω</td>
<td>± 10 %</td>
<td>± 50 mΩ ± 60 mΩ</td>
<td>2.0 A</td>
<td>15 A</td>
<td>1.5 % + 50 mA</td>
<td>10 mA</td>
</tr>
<tr>
<td>17 Ω</td>
<td>± 10 %</td>
<td>± 90 mΩ ± 100 mΩ</td>
<td>1.5 A</td>
<td>10 A</td>
<td>1.5 % + 30 mA</td>
<td>10 mA</td>
</tr>
<tr>
<td>50 Ω</td>
<td>± 10 %</td>
<td>± 250 mΩ ± 300 mΩ</td>
<td>0.8 A</td>
<td>5.0 A</td>
<td>1.5 % + 20 mA</td>
<td>1 mA</td>
</tr>
<tr>
<td>90 Ω</td>
<td>± 10 %</td>
<td>± 450 mΩ ± 500 mΩ</td>
<td>0.5 A</td>
<td>3.0 A</td>
<td>1.5 % + 10 mA</td>
<td>1 mA</td>
</tr>
<tr>
<td>170 Ω</td>
<td>± 10 %</td>
<td>± 1 Ω ± 1 Ω</td>
<td>0.25 A</td>
<td>1.35 A</td>
<td>1.5 % + 5 mA</td>
<td>1 mA</td>
</tr>
<tr>
<td>500 Ω</td>
<td>± 10 %</td>
<td>± 2.5 Ω ± 2.5 Ω</td>
<td>0.1 A</td>
<td>0.6 A</td>
<td>1.5 % + 3 mA</td>
<td>1 mA</td>
</tr>
<tr>
<td>900 Ω</td>
<td>± 10 %</td>
<td>± 5 Ω ± 5 Ω</td>
<td>0.05 A</td>
<td>0.3 A</td>
<td>1.5 % + 2 mA</td>
<td>1 mA</td>
</tr>
<tr>
<td>1.7 kΩ</td>
<td>± 10 %</td>
<td>± 10 Ω ± 10 Ω</td>
<td>0.030 A</td>
<td>0.15 A</td>
<td>1.5 % + 2 mA</td>
<td>1 mA</td>
</tr>
</tbody>
</table>

[1] Test currents up to 30 % of maximum continuous test current can be applied to the Calibrator with no time limitation. Test current between 30% and 100 % of the maximum continuous test current can be applied to the Calibrator for a limited time. The Calibrator calculates the allowed time period and when exceeded, the output connectors are disconnected. Minimum period of full current load is 45 seconds.

Open mode

Nominal resistance ..>100 kΩ
Maximum voltage...50 V (ac + dc) rms
Test voltage range ..0 V to 50 V (ac + dc) rms
Resolution..1 V
Uncertainty..2 % + 2 V

Line/loop impedance source

Range..25 mΩ to 1700 Ω
Resolution..16 discrete values
Range of lead resistance compensation.......................0 Ω to 2.000 Ω

Uncertainty and maximum ratings

<table>
<thead>
<tr>
<th>Nominal resistance value</th>
<th>Deviation from nominal value</th>
<th>Absolute uncertainty of characterized value (tcal ± 5 °C) Days since relay dleaning</th>
<th>Maximum continuous test current AC rms or DC[1]</th>
<th>Maximum short-term test current AC rms or DC[2]</th>
<th>Test current uncertainty ±(% reading + mA)</th>
<th>Test current resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 mΩ</td>
<td>± 50 %</td>
<td>± 8 mΩ ± 12 mΩ</td>
<td>30 A</td>
<td>40 A</td>
<td>1.5 % + 0.7 A</td>
<td>100 mA</td>
</tr>
<tr>
<td>50 mΩ</td>
<td>± 50 %</td>
<td>± 8 mΩ ± 12 mΩ</td>
<td>28 A</td>
<td>40 A</td>
<td>1.5 % + 0.5 A</td>
<td>100 mA</td>
</tr>
<tr>
<td>90 mΩ</td>
<td>± 30 %</td>
<td>± 8 mΩ ± 12 mΩ</td>
<td>25 A</td>
<td>40 A</td>
<td>1.5 % + 0.35 A</td>
<td>100 mA</td>
</tr>
<tr>
<td>350 mΩ</td>
<td>± 20 %</td>
<td>± 8 mΩ ± 14 mΩ</td>
<td>14 A</td>
<td>40 A</td>
<td>1.5 % + 0.3 A</td>
<td>100 mA</td>
</tr>
<tr>
<td>500 mΩ</td>
<td>± 10 %</td>
<td>± 8 mΩ ± 15 mΩ</td>
<td>12 A</td>
<td>40 A</td>
<td>1.5 % + 0.2 A</td>
<td>100 mA</td>
</tr>
<tr>
<td>0.96 Ω</td>
<td>± 10 %</td>
<td>± 10 mΩ ± 20 mΩ</td>
<td>8 A</td>
<td>40 A</td>
<td>1.5 % + 150 mA</td>
<td>10 mA</td>
</tr>
<tr>
<td>1.7 Ω</td>
<td>± 10 %</td>
<td>± 13 mΩ ± 25 mΩ</td>
<td>6 A</td>
<td>30 A</td>
<td>1.5 % + 100 mA</td>
<td>10 mA</td>
</tr>
<tr>
<td>5 Ω</td>
<td>± 10 %</td>
<td>± 30 mΩ ± 37 mΩ</td>
<td>3.2 A</td>
<td>21 A</td>
<td>1.5 % + 70 mA</td>
<td>10 mA</td>
</tr>
<tr>
<td>9 Ω</td>
<td>± 10 %</td>
<td>± 50 mΩ ± 60 mΩ</td>
<td>2.0 A</td>
<td>15 A</td>
<td>1.5 % + 50 mA</td>
<td>10 mA</td>
</tr>
<tr>
<td>17 Ω</td>
<td>± 10 %</td>
<td>± 90 mΩ ± 100 mΩ</td>
<td>1.5 A</td>
<td>10 A</td>
<td>1.5 % + 30 mA</td>
<td>10 mA</td>
</tr>
<tr>
<td>50 Ω</td>
<td>± 10 %</td>
<td>± 250 mΩ ± 300 mΩ</td>
<td>0.8 A</td>
<td>5.0 A</td>
<td>1.5 % + 20 mA</td>
<td>1 mA</td>
</tr>
<tr>
<td>90 Ω</td>
<td>± 10 %</td>
<td>± 450 mΩ ± 500 mΩ</td>
<td>0.5 A</td>
<td>3.0 A</td>
<td>1.5 % + 10 mA</td>
<td>1 mA</td>
</tr>
<tr>
<td>170 Ω</td>
<td>± 10 %</td>
<td>± 1 Ω ± 1 Ω</td>
<td>0.25 A</td>
<td>1.35 A</td>
<td>1.5 % + 5 mA</td>
<td>1 mA</td>
</tr>
<tr>
<td>500 Ω</td>
<td>± 10 %</td>
<td>± 2.5 Ω ± 2.5 Ω</td>
<td>0.1 A</td>
<td>0.6 A</td>
<td>1.5 % + 3 mA</td>
<td>1 mA</td>
</tr>
<tr>
<td>900 Ω</td>
<td>± 10 %</td>
<td>± 5 Ω ± 5 Ω</td>
<td>0.05 A</td>
<td>0.3 A</td>
<td>1.5 % + 2 mA</td>
<td>1 mA</td>
</tr>
<tr>
<td>1.7 kΩ</td>
<td>± 10 %</td>
<td>± 10 Ω ± 10 Ω</td>
<td>0.030 A</td>
<td>0.15 A</td>
<td>1.5 % + 2 mA</td>
<td>1 mA</td>
</tr>
</tbody>
</table>
Test currents up to 30 % of maximum continuous test current can be applied to the calibrator with no time limitation. Test current between 30 % and 100 % of the maximum continuous test current can be applied to the calibrator for a limited time. Minimum period of full current load is 45 seconds. The calibrator calculates the allowed time period and when exceeded, the output connectors are disconnected.

[2] Maximum short term test current is defined as the rms value of halfwave or fullwave test current flowing through the device under test (DUT). Maximum time of test is 200 ms. A time interval of 200 ms represents 10 full waves of power line voltage at 50 Hz and 12 full waves at 60 Hz.

Test current measurement

Type of recognized test current
- Positive impulse (halfwave), negative impulse (halfwave), symmetrical (fullwave)

Range
- 0 A to 40 A (ac + dc) rms

Prospective fault current

Range
- 0 kA to 10 kA

Correction manual mode

Residual impedance range
- 0 Ω to 10 Ω

Resolution
- 1 mΩ

Uncertainty
- Uncertainty in manual (MAN) mode is the uncertainty of the selected resistance value. See uncertainty and maximum range table above. Also, take into consideration the uncertainty of any manually-entered correction.

Correction scan mode

Residual impedance range
- 0 Ω to 10 Ω

Resolution
- 1 mΩ

Uncertainty
- ±(1 % + 15 mΩ + uncertainty of selected resistance value)

Correction COMP mode (active loop compensation) (5322A/VLC option)

Maximum compensated impedance
- 0 Ω to 2 Ω, see graph below for details

Maximum test current
- < 25 A, see graph below for details

Uncertainty of compensation
- ± (1 % + 15 mΩ + uncertainty of selected resistance value).

Uncertainty is valid at the point in time when the COMP function is initiated.

![Compensator working condition](image)

Residual resistance is the value of resistance which the Compensator can correct for based on the test current level sourced by the device under test (DUT). The Tmax parameter is the maximum time the compensator can correct the residual resistance before an overload condition is detected.
Leakage current source

Range
- 0.1 to 30 mA

Resolution
- Passive mode: 10 μA setting, 1 μA measurement
- Differential mode: 10 μA setting, 1 μA measurement
- Substitute mode: 10 μA
- Active mode (5322A/VLC only): 10 μA

Test voltage
- Passive mode: 60 V ac rms to 250 V ac rms
- Differential mode: 60 V ac to 250 V ac rms
- Substitute mode: 10 V ac to 250 V ac rms
- Active mode (5322A/VLC only): 50 V ac to 100 V ac rms

Uncertainty
- Passive mode: ± (0.3% reading + 2 μA)
- Differential mode: ± (0.3% reading + 2 μA)
- Substitute mode: ± (0.3% setting + 2 μA)
- Active mode (5322A/VLC only): ± (0.3% setting + 1 μA)

[1] The active mode outputs are synchronized with the ac mains frequency to suppress interference between the calibrator and external noise sources.

Substitute mode SHORT
- Input resistance: <150 Ω
- Test current range: 50 mA
- Test current uncertainty: ± (0.5% reading + 10 μA) OPEN mode input

Substitute mode OPEN
- Input resistance: 30 MΩ ±5%
- Touch voltage range: 50 V
- Touch voltage uncertainty: ± (2 % reading +1 V)

Human body simulation (for substitute leakage current only)
- Resistance range: 0 Ω to 10000 Ω
- Resolution: 1 Ω

RCD (residual current device) (for installation testers)

Trip current range:
- 0.5 X I and 1 X I Mode: 5 to 30 mA in 1 mA steps
- 1.4 X I and 2 X I Mode: 14 to 60 mA in 1 mA steps
- 5 X I Mode: 50 to 150 mA in 1 mA steps

Trip current measurement resolution:
- 1 μA bellow 30 mA
- 10 μA in range from 30 mA to 150 mA
- 100 μA in range from 300 mA to 3 A

Trip current measurement uncertainty:
- ± 1% of nominal current (I) setting
- Trip time range: 10 to 5000 ms
- Trip time uncertainty: (0.02 % setting + 0.25 ms)

Touch/line voltage
- Touch voltage range: 50 V
- Touch voltage setting: in discrete points depending on setup trip current value
- Touch series resistance: 0.02 Ω, 0.05 Ω, 0.10 Ω, 0.35 Ω, 0.50 Ω, 0.96 Ω, 1.7 Ω, 4.7 Ω, 9 Ω, 17 Ω, 47 Ω, 90 Ω, 170 Ω, 470 Ω, 900 Ω, 1700 Ω
- Line voltage range: 250 V
- Line voltage uncertainty: ± (5 % reading + 3 V)
- User selectable nominal line voltage: 100 V/115 V/120 V/220 V/230 V/240 V/250 V or real
- Post-trip delayed power restore mode: user selectable
RCD (residual current device) (for PATs)

Trip current range
- 0.5 X I and 1 X I mode: 3 to 3000 mA in 1 mA steps
- 1.4 X I and 2 X I mode: 3 to 1500 mA in 1 mA steps
- 5 X I mode: 3 to 600 mA in 1 mA steps

Trip current measurement resolution
- 1 μA below 30 mA
- 10 μA in range from 30 mA to 300 mA

Trip current measurement uncertainty
- ± 1 % of nominal current (I) setting

Trip time range
- 10 to 5000 ms

Trip time uncertainty
- (0.02 % setting + 0.25 ms)

Line voltage
- Line voltage range: 250 V
- Line voltage uncertainty: ± (5 % reading + 3 V)

User selectable nominal line voltage
- 100 V/115 V/120 V/220 V/230 V/240 V/250 V or real

Automatic reconnection after tripping
- off/on

Reconnection delay
- 2.5 s resistance mode

AC/DC voltage calibrator (5322A with VLC option)

Range
- 0.03 V to 600 V, ac or dc

Resolution
- 4 digits

Internal ranges
- AC mode: 0.3 V, 3 V, 30 V, 100 V, 300 V, and 600 V (autoranging only)
- DC mode: 0.3 V, 3 V, 30 V, 150 V, and 600 V (autoranging only)

Output Resistance
- <1 Ω

Frequency
- Range: 40 Hz to 400 Hz

Resolution
- 3 digits

Uncertainty
- 0.02 %

Settling time
- < 3 s to 1 % floor to specified accuracy

AC voltage

Uncertainty and maximum burden current

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
<th>Uncertainty ± (% of output + mV)</th>
<th>Maximum burden current</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.00 mV to 300.00 mV</td>
<td>0.01 mV</td>
<td>0.5 % + 1</td>
<td>2 mA</td>
</tr>
<tr>
<td>0.3001 V to 3.0000 V</td>
<td>0.0001 V</td>
<td>0.3 % + 3</td>
<td>2 mA</td>
</tr>
<tr>
<td>3.001 V to 30.000 V</td>
<td>0.001 V</td>
<td>0.1 % + 9</td>
<td>500 mA</td>
</tr>
<tr>
<td>30.01 V to 100.00 V</td>
<td>0.1 V</td>
<td>0.1 % + 30</td>
<td>300 mA</td>
</tr>
<tr>
<td>100.01 V to 300.00 V</td>
<td>0.01 V</td>
<td>0.1 % + 90</td>
<td>250 mA [1]</td>
</tr>
<tr>
<td>300.01 V to 600.00 V</td>
<td>0.01 V</td>
<td>0.1 % + 180</td>
<td>50 mA</td>
</tr>
</tbody>
</table>

[1] 200 mA when power line is between -10 % and -14 % of nominal.

DC voltage

Uncertainty and maximum burden current

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
<th>Uncertainty ± (% of output + mV)</th>
<th>Maximum burden current</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.00 mV to 300.00 mV</td>
<td>0.01 mV</td>
<td>0.5 % + 1</td>
<td>2 mA</td>
</tr>
<tr>
<td>0.3001 V to 3.0000 V</td>
<td>0.0001 V</td>
<td>0.3 % + 3</td>
<td>2 mA</td>
</tr>
<tr>
<td>3.001 V to 30.000 V</td>
<td>0.001 V</td>
<td>0.1 % + 9</td>
<td>2 mA</td>
</tr>
<tr>
<td>30.01 V to 100.00 V</td>
<td>0.01 V</td>
<td>0.1 % + 30</td>
<td>3 mA</td>
</tr>
<tr>
<td>150.01 V to 600.00 V</td>
<td>0.01 V</td>
<td>0.1 % + 180</td>
<td>5 mA</td>
</tr>
</tbody>
</table>

AC output signal distortion: 0.2 % +10 mV (harmonic distortion and non-harmonic noise in
frequency range from 20 Hz to 500 kHz), for output power up to 10 VA on each range.

Sensing ammeter current range .. 500 mA ac
Resolution ... 1 mA
Uncertainty ... ± 5 mA

Multimeter

Trip current range
- HV terminal to COM terminal ... 5000 V rms
- V terminal to COM terminal ... 1100 V rms
- COM terminal to protective earth 2200 V pk

AC/DC voltage

<table>
<thead>
<tr>
<th>Range</th>
<th>Input resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 V dc to ±1100 V dc</td>
<td>10 MΩ ±1 % on 10, 100, 1100 V ranges (V input terminal)</td>
</tr>
<tr>
<td>0 V dc to ±5000 V dc</td>
<td>120 MΩ ±1 % on 5000 V rms / 5000 V dc ranges (HV input terminal)</td>
</tr>
</tbody>
</table>

Resolution ... 4 digits

Frequency range
- DC, 20 Hz to 2 kHz
- DC, 20 Hz to 100 Hz

Input resistance ..
- 10 MΩ ±1 % on 10, 100, 1100 V ranges (V input terminal)
- 120 MΩ ±1 % on 5000 V rms / 5000 V dc ranges (HV input terminal)

Settling time ... 1.5 s below 1100 V, 3 s above 1100 V to 1 % floor to specified accuracy

Readings/second .. 2

Measurement category ... CAT II

CMRR .. -75 dB (dc, 50 Hz or 60 Hz)

AC/DC voltage uncertainty

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
<th>Uncertainty (dV) ± (% of reading + mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 V ac/dc</td>
<td>0.001 V</td>
<td>0.15 % + 5</td>
</tr>
<tr>
<td>100 V ac/dc</td>
<td>0.01 V</td>
<td>0.20 % + 50</td>
</tr>
<tr>
<td>1100 V ac/dc</td>
<td>0.1 V</td>
<td>0.20 % + 550</td>
</tr>
<tr>
<td>5000 V rms/5000 V dc</td>
<td>1 V</td>
<td>0.30 % + 5500</td>
</tr>
</tbody>
</table>

AC/DC current

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
<th>Uncertainty (dI) ± (% of reading + mA)</th>
<th>Input resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 A to 20 A</td>
<td>0.1 mA</td>
<td>0.15 % + 0.15</td>
<td>500 mΩ</td>
</tr>
<tr>
<td>3 A</td>
<td>1 mA</td>
<td>0.15 % + 1.5</td>
<td>75 mΩ</td>
</tr>
<tr>
<td>30 A</td>
<td>10 mA</td>
<td>0.30 % + 15</td>
<td>25 mΩ</td>
</tr>
</tbody>
</table>

[1] Uncertainty specification is valid when voltage between the COM terminal to protective earth is < 20 V rms.
AC Power

Range .. 0 kVA ac to 33 kVA ac
Voltage range .. 0 V ac to 1100 V ac
Current range .. 0 A ac to 30 A ac
Frequency range ... 40 Hz to 65 Hz
Type .. Apparent, active, reactive
Resolution ... 3.5 digits
Phase indication .. Phase angle (\(\phi\)), power factor (PF)
Phase uncertainty (d\(\phi\)) ± 0.1 °
Power uncertainty
 Active power uncertainty \(d_{PW} = \sqrt{(dV^2 + dI^2 + dPF^2)}\)%
 Reactive power uncertainty calculation \(d_{PVAR} = \sqrt{(dV^2 + dI^2 + dPFVAR^2)}\)%
 Apparent power uncertainty calculation \(d_{PVA} = \sqrt{(dV^2 + dI^2)}\)%

\(\phi\) is measured phase [°],
d\(\phi\) is the uncertainty of measured phase [°]
d\(V\) is the uncertainty of the measured voltage [%],
d\(I\) is the uncertainty of the measured current [%]

DC Power

Range .. 0 to 33 kVA dc
Voltage range .. 0 to 1100 V dc
Current range .. 0 to 30 A dc
Resolution ... 3.5 digits
Power uncertainty .. \(PW = \sqrt{(dV^2 + dI^2)}\)%

\(dV\) is the uncertainty of the measured voltage [%],
d\(I\) is the uncertainty of the measured current [%]

Hipot leakage current measurement mode

Range .. 0 mA ac rms or dc to 300 mA ac rms or dc
Resolution ... 4.5 digits
Frequency range .. DC, 20 Hz to 400 Hz
Time constant ... 1.5 s
Readings/second .. 2

Hipot leakage current mode uncertainty

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
<th>Uncertainty ±(% of reading + (\mu)A) (^{[1]})</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 (\mu)A</td>
<td>0.01 (\mu)A</td>
<td>0.3 % + 0.2</td>
</tr>
<tr>
<td>30 (\mu)A</td>
<td>1 (\mu)A</td>
<td>0.2 % + 15</td>
</tr>
</tbody>
</table>

\(^{[1]}\) Uncertainty specification is valid when voltage between the COM terminal to protective earth is < 20 V rms.

Hipot timer measurement mode

Range .. 0.1 s to 999 s
Resolution ... 1 ms
Uncertainty .. dc ± (0.02 % reading + 2 ms)
ak ± (0.02 % reading + 20 ms)
Threshold voltage adjustment 10 % to 99 % of applied voltage range
Adjustment resolution 1 %

Hipot AC voltage distortion measurement

Frequency range .. 45 Hz to 65 Hz
Number of harmonics 25
Voltage range ... 10 V to 5000 V rms
THD range .. 0 % to 10 %
THD resolution .. 3.5 digits
Uncertainty .. ± 0.5 % THD

Hipot DC voltage ripple coefficient measurement

Voltage range ... 100 V dc to 5000 V dc
Ripple coefficient range .. 10 %
Resolution ... 3.5 digits
Uncertainty (relative ripple coefficient) ± 0.5 % ripple coefficient
Uncertainty (absolute ripple coefficient) ± 0.5 % of total voltage [dc + ac] measured

Note

Relative ripple coefficient is defined by the ratio $\frac{V_{ac \ rms}}{V_{dc}}$ expressed in %
where $V_{ac \ rms}$ is the root mean square of the ac signal contained in the test voltage. V_{dc} is the average measured dc value of the test voltage.

Absolute ripple coefficient is defined by the difference between the minimum and maximum measured dc level.

Flash test voltage measurement (using flash LC or flash V mode)

Class I voltage range .. 2000 V ac rms
Uncertainty .. ± (0.3 % of reading + 6 V)
Class II voltage range .. 3000 V ac rms
Uncertainty .. ± (1 % of reading value + 6 V)

Flash leakage current measurement (using flash LC mode)

Range ... 0 mA ac rms or dc to 300 mA ac rms or dc
Resolution ... 4.5 digits

Flash leakage current mode uncertainty

<table>
<thead>
<tr>
<th>Range</th>
<th>Resolution</th>
<th>Uncertainty ± (% of reading + μA) [1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 uA</td>
<td>0.01 μA</td>
<td>0.3 % + 0.2</td>
</tr>
<tr>
<td>3 mA</td>
<td>0.1 μA</td>
<td>0.2 % + 1.5</td>
</tr>
<tr>
<td>30 mA</td>
<td>1 μA</td>
<td>0.2 % + 15</td>
</tr>
</tbody>
</table>

[1] Uncertainty specification is valid when voltage between the COM terminal to protective earth is < 20 V rms.

10 kV divider (1000:1 voltage divider)

Range .. 0 kV ac peak/dc to 10 kV ac peak/dc
Resolution ... 4.5 digits
Uncertainty .. ± (0.5 % of input + 5 V dc)
 ± (0.5 % of input + 10 V ac at 50 Hz or 60 Hz

80K-40 high voltage probe (1000:1 voltage divider)

Range .. 0 kV ac peak/dc to 40 kV ac peak/dc
Resolution ... 4.5 digits
Uncertainty ..
- dc: ± (0.5 % of input + 10 V)
- dc: ± (0.5 % of input + 10 V)

Note

Uncertainty specification applies to probes calibrated with the 5322A and includes specification for probe division ratio and input impedance of the Meter.
Ordering information

Models *

<table>
<thead>
<tr>
<th>Models</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5322A</td>
<td>Multifunction electrical tester calibrator with 1.5 kV resistance</td>
</tr>
<tr>
<td>5322A/5</td>
<td>Multifunction electrical tester calibrator with 5 kV high voltage resistance outputs</td>
</tr>
<tr>
<td>5322A/40</td>
<td>Calibrator with 1.5 kV resistance and 40 kV probe</td>
</tr>
<tr>
<td>5322A/VLC</td>
<td>Calibrator with 1.5 kV resistance, 600 V source, voltage loop compensation</td>
</tr>
<tr>
<td>5322A/5/40</td>
<td>Calibrator with 5 kV resistance, and 40 kV probe</td>
</tr>
<tr>
<td>5322A/5/VLC</td>
<td>Calibrator with 5 kV resistance, 600 V source, voltage loop compensation</td>
</tr>
<tr>
<td>5322A/VLC/40</td>
<td>Calibrator with 1.5 kV resistance, 600 V source, voltage loop compensation and 40 kV probe</td>
</tr>
<tr>
<td>5322A/5/VLC/40</td>
<td>Calibrator with 5 kV resistance, 600 V source, voltage loop compensation and 40 kV probe</td>
</tr>
</tbody>
</table>

Accessories

<table>
<thead>
<tr>
<th>Accessories</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5322A-LOAD</td>
<td>High voltage resistor load for 5322A</td>
</tr>
<tr>
<td>Y5320A</td>
<td>Rack mount kit for 5322A – sliding</td>
</tr>
<tr>
<td>5322A/CASE</td>
<td>Transit case for 5322A</td>
</tr>
</tbody>
</table>

*All models come with region specific line cord and adaptors, RCD-PAT adapter, PAT-LOAD adapter, R-multiplexer with coax connector cable, 10 kV divider, HV test lead set, and plug-and-socket-to-banana-connectors for your region. Probe models include characterized 40 kV probe matched to base model. One Year Factory warranty and UKAS Accredited calibration.