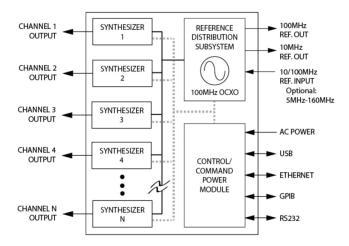


Datasheet

HS9000 Series Multi-channel RF synthesizers

The Holzworth HS9000 Series multi-channel platform is designed to achieve optimal channel-to channel stability across multiple integrated channel synthesizers via a conductively cooled, fan-less enclosure. Specific attention is paid to phase coherency between the independently controllable channels. Application specific frequency options can be configured to cover combinations up to 1 GHz, 2 GHz, 3 GHz, 4 GHz, 6 GHz, 12 GHz, and 18 GHz.

HS9000 Series Multi-Channel RF Synthesizers


The HS9000 Series is a unique platform allowing the user to specify custom configurations for a COTS product. Units are loaded with anywhere from 1 to 8 channels, with the additional flexibility to specify each channel's frequency limits and performance options. A 16-channel narrow band configuration is also available. The result is a high performance, low phase noise, fast switching, multi-channel synthesizer that is tailored to an application with an optimal price point.

FULLY INDEPENDENT CHANNELS

Each RF output is driven by a separate, internally loaded synthesizer module. Up to 16 independently tunable synthesizers can be specified per 1U chassis allowing for the highest integrated channel density available in its class. With an average power dissipation of < 9 Watts per channel, the HS9000 series is highly efficient.

PHASE COHERENT CHANNELS

Holzworth Multi-channel RF Synthesizers offer the benefits of a proprietary NON-PLL based synthesis architecture. Coupling the NON-PLL architecture with a centralized reference distribution subsystem enables a highly phase coherent relationship across all integrated channels.

THE ULTIMATE IN CHANNEL-TO-CHANNEL STABILITY

Different from traditional PLL based synthesizers, Holzworth's proprietary architecture creates precisely synthesized signals that exhibit both instantaneous and long term stability. Temperature variations between the channels remain the only contribution to relative phase drift. The thermally optimized, fan-less chassis was specifically developed for maintaining the lowest possible thermal gradients from channel-to-channel.

Holzworth multi-channel designs are integrated into precision applications that range from ATE systems to paticle accelerator timing clocks to quantum computing systems. Due to the necessity for the ultimate in signal stability, Holzworth synthesizers also come standard with thermal monitor outputs to track the relative channel temperature of each loaded channel.

HS9000 Series Multi-Channel RF Synthesizers 1 GHz/2 GHz/3 GHz/4 GHz/6 GHz FREQUENCY PERFORMANCE

The specified frequency based parameters for the HS9000 Series Multi-Channel RF Synthesizers are fully verified at final performance test and 100% guaranteed for the full warranty period of the product.

PARAMETER	MIN ¹	TYPICAL ²	MAX ¹	COMMENTS
Frequency Range 1 GHz 2 GHz 3 GHz 4 GHz 6 GHz	10 MHz 10 MHz 10 MHz 10 MHz 10 MHz		1.024 GHz 2.048 GHz 3.072 GHz 4.096 GHz 6.000 GHz	Settable from 5 MHz to 3.072 GHz Settable from 5 MHz to 4.096 GHz
Frequency Step Size		0.001 Hz		
Phase Offset Range 10 MHz - 512 MHz 512 MHz - 1.024 GHz 1.024 GHz - 2.048 GHz 2.048 GHz - 4.096 GHz 4.096 GHz - 6.000 GHz		0.1 deg 0.2 deg 0.4 deg 0.8 deg 1.6 deg	+360 deg	Offset Accuracy: ±0.05 deg ±0.10 deg ±0.20 deg ±0.40 deg ±0.80 deg
Switching Speed (Frequency) SPI Mode (ASCII) SPI Mode (Binary) List/Step Sweep Mode (WB) List/Step Sweep Mode (NB)		350 μs 200 μs 70 μs 6 μs		No additional frequency settling time Wideband Mode (full bandwidth) Narrowband Mode (≤9% bandwidth) ³
Digital Sweep Modes Operating Modes Sweep Range Dwell Time Wideband/Sweep Dwell Time Narrowband Number of Points (STEP) Number of Points (LIST) Triggering	10 MHz 100 µs 6 us 2 2		6.4 GHz 10 s 10s 65535 3232	Step sweep (linear, internal) List Sweep (arbitrary list of frequency steps) Simultaneous Amplitude sweep (list) Limited to max frequency of model number 1 µs increments 1 µs increments Free Run, External Trigger

¹ All MIN/ MAX performance parameters are guaranteed and 100% verified during final performance test, unless noted otherwise.
² Typical performance is "by design" and consistent with field performance data.

 3 Narrowband List mode frequency limits are defined as: FCENTER ± ((FCENTER x 0.09) / 2).

HS9000 Series Multi-Channel RF Synthesizers 12 GHz/18 GHz FREQUENCY PERFORMANCE

The specified frequency based parameters for the HS9000 Series Multi-Channel RF Synthesizers are fully verified at final performance test and 100% guaranteed for the full warranty period of the product.

PARAMETER	MIN ¹	TYPICAL ²	MAX ¹	COMMENTS
Frequency Range 12 GHz 18 GHz	100 MHz 100 MHz		12 GHz 18 GHz	See page 5 for channel selection options VHF through X Band (settable from 10 MHz to 12.5 GHz) VHF through K_u Band (settable from 10 MHz to to 20.48 GHz)
Frequency Step Size		0.001 Hz		
Phase Offset	0 deg		+360 deg	
Switching Speed (Frequency) SPI Mode (ASCII) SPI Mode (Binary)		350 μs 200 μs		No additional frequency settling time

All MIN/ MAX performance parameters are guaranteed and 100% verified during final performance test, unless noted otherwise.

² Typical performance is "by design" and consistent with field performance data.

REFERENCE SPECIFICATIONS

PARAMETER	MIN ¹	TYPICAL ²	MAX ¹	COMMENTS
Internal Time Base Reference Frequency Oscillator Aging Rate Temperature Effects		100 MHz ± 1 ppm/yr ±1 ppm		Precision OCXO 1 st year. ±0.5 ppm/yr each subsequent year 0 to 55 °C
10 MHz Reference Output Amplitude Impedance	+2 dBm	50 Ω	+6 dBm	See plot on page 14 for measured phase noise data. Nominal Nominal
100 MHz Reference Output Amplitude Impedance	+2 dBm	50 Ω	+6 dBm	See plot on page 14 for measured phase noise data. Nominal Nominal
External Reference Input (standard) Input Frequency Lock Range External Amplitude Impedance Waveform	0 dBm	10/100 MHz ± 4 ppm 50 Ω	±1 ppm +10 dBm	20 Hz Locking BW 50 Ω (nominal) Sine or Square
OPT-REFX Ext. Ref. Input (optional) ³ Input Frequency Range Lock Range External Amplitude Impedance Waveform	5 MHz 0 dBm	± 4 ppm 50 Ω	160 MHz ± 1 ppm +10 dBm	Any 100 kHz increment within range Sine or square

¹ All MIN/ MAX performance parameters are guaranteed and 100% verified during final performance test, unless noted otherwise.

² Typical performance is "by design" and consistent with field performance data.

³ Please contact factory regarding phase noise performance when this option is fitted.

HS9000 Series Multi-Channel RF Synthesizers CONFIGURATION GUIDE

The HS9000 Series synthesizer platform is designed to be user/application defined. Follow 4 easy steps to determine the part number with the required options.

STEP 1: SELECT TOTAL NUMBER OF CHANNELS

Select the base part number, strictly calling out the total number of channels to be loaded into the multi-channel chassis.

No. Channels	1	2	3	4	5	6	7	8
Part Number	HS9001B	HS9002B	HS9003B	HS9004B	HS9005B	HS9006B	HS9007B	HS9008B

STEP 2: SELECT CHANNEL FREQUENCY OPTIONS

Select any combination of channel frequency options. Note that the total number of channels specified here must equal the number of channels selected under STEP 1.

Frequency Denge			Number of C	hannels per F	requency	Range		
Frequency Range	1x	2x	Зх	4x	5x	бх	7x	8x
CMOS 10 MHz - 500 MHz ¹	OPT-CMOS1	OPT-CMOS2	OPT-CMOS3	OPT-CMOS4	NA	NA	NA	NA
10 MHz - 1 GHz	OPT-A1	OPT-A2	OPT-A3	OPT-A4	OPT-A5	OPT-A6	OPT-A7	OPT-A8
10 MHz – 2 GHz	OPT-B1	OPT-B2	OPT-B3	OPT-B4	OPT-B5	OPT-B6	OPT-B7	OPT-B8
10 MHz – 3 GHz	OPT-C1	OPT-C2	OPT-C3	OPT-C4	OPT-C5	OPT-C6	OPT-C7	OPT-C8
10 MHz – 4 GHz	OPT-D1	OPT-D2	OPT-D3	OPT-D4	OPT-D5	OPT-D6	OPT-D7	OPT-D8
10 MHz – 6 GHz	OPT-E1	OPT-E2	OPT-E3	OPT-E4	OPT-E5	OPT-E6	OPT-E7	OPT-E8
100 MHz – 12 GHz ¹	OPT-X1	OPT-X2	OPT-X3	OPT-X4	NA	NA	NA	NA
100 MHz – 18 GHz ¹	OPT-F1	OPT-F2	OPT-F3	OPT-F4	NA	NA	NA	NA

¹ These frequency ranges occupy two channel spaces.

STEP 3: SELECT OPTIONS AND ACCESSORIES

The options listed in this section are available for the multi-channel platform to comply with application specific requirements.

ТҮРЕ	Part Number	Description
OPTION ¹	OPT-EXTMOD-n	Channel dedicated, external modulation input. n= 1, 2, 3, etc. >6, contact factory
OPTION	OPT-REFX	5 MHz-160 MHz Reference Input Capability (100kHz Increments)
ACCESSORY	RACK-1U	19" Rack Mount Bracket Kit, 90° rear bracket
ACCESSORY	RACK2-1U	19" Rack Mount Bracket Kit, straight rear bracket

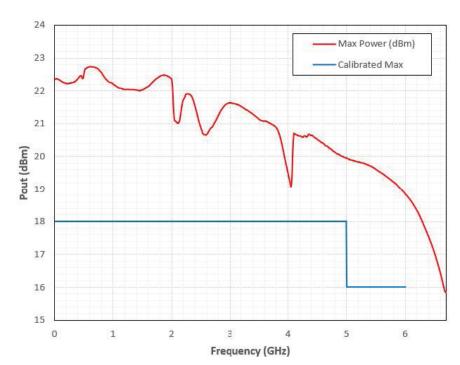
¹ Available for channels up to 6 GHz maximum output only.

PART NUMBER EXAMPLE

Ordering a 5-channel synthesizer with 1x CMOS channel, 1x 3 GHz channel, 2x 6 GHz channels, and 1x 12 GHz channel would result in the following configuration:

		Description
Part Number	HS9005B	5ch, Multi-Channel RF Synthesizer
Options	OPT-CMOS1 OPT-C1 OPT-E2 OPT-X1	1x CMOS Channel 1x 3 GHz Channel 2x 6 GHz Channels 1x 12 GHz Channel

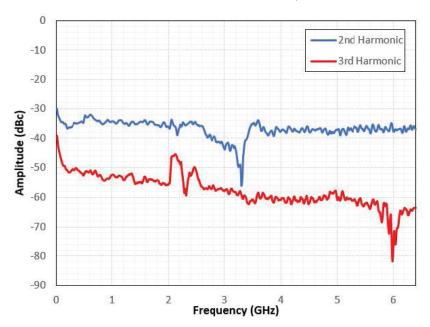
HS9000 Series Multi-Channel RF Synthesizers 1 GHz/2 GHz/3 GHz/4 GHz/6 GHz AMPLITUDE PERFORMANCE


The specified amplitude based parameters for the HS9000 Series Multi-Channel RF Synthesizers are fully verified at final performance test and 100% guaranteed for the full warranty period of the product.

PARAMETER	MIN ¹	TYPICAL ²	MAX ¹	COMMENTS
Output Power (Calibrated)	-50 dBm		+18 dBm	Settable from -90 dBm to +25 dBm
Absolute Level Accuracy 10 MHz ≤ f ≤ 6 GHz +18 to +15 dBm 10 MHz ≤ f ≤ 6 GHz +15 to -10 dBm 10 MHz ≤ f ≤ 6 GHz -10 to -50 dBm		± 0.35 dB ± 0.25 dB ± 0.50 dB	± 1.00 dB ± 0.65 dB ± 1.50 dB	20 °C to 30 °C (ambient temperature)
Resolution		0.01 dB		
Connector		50 Ω		SMA
VSWR (S22) 10 MHz to 2 GHz 2 GHz to 4.1 GHz 4.1- 6.4 GHz		1.33 (-17 dB) 1.57 (-13 dB) 2.32 (-8 dB)		
Maximum Reverse Power Max DC Voltage > 10 MHz		aximum by desig 16dBm) max by (*** Some applications may require reverse power protection.
Switching Speed (Amplitude) SPI Mode List / Step Sweep Mode		200 μs 1 μs		Settled within 10% of set value
SSB Phase Noise 100 MHz, 10 kHz offset 500 MHz, 10 kHz offset 1.0 GHz, 10 kHz offset 2.0 GHz, 10 kHz offset 3.0 GHz, 10 kHz offset 4.0 GHz, 10 kHz offset 6.0 GHz, 10 kHz offset		≤ -147 dBc/Hz ≤ -138 dBc/Hz ≤ -132 dBc/Hz ≤ -126 dBc/Hz ≤ -122 dBc/Hz ≤ -120 dBc/Hz ≤ -116 dBc/Hz	≤ -132 dBc/Hz ≤ -126 dBc/Hz ≤ -120 dBc/Hz ≤ -116 dBc/Hz ≤ -114 dBc/Hz	See plot on page 9 for measured data.
Harmonics (CW mode) 100 MHz to 1.024 GHz >1.024 GHz to 4.096 GHz >4.096 GHz to 6.0 GHz		(2ND / 3RD) -42 / -60 dBc -45 / -75 dBc -50 / -65 dBc	(All) -30 dBc -30 dBc -40 dBc	See plot on page 8 for measured data. @ 0 dBm @ 0 dBm @ 0 dBm
Sub-Harmonics (CW mode) 10 MHz to 1.024 GHz >1.024 GHz to 4.096 GHz >4.096 GHz to 6.0 GHz		(1/2 / 3/2) -90 / -75 dBc -75 / -60 dBc -65 / -80 dBc	(All) -60 dBc -45 dBc -50 dBc	See plot on page 8 for measured data. @ 0 dBm @ 0 dBm @ 0 dBm
Non-Harmonics/Broadband Spurious (CW mode) 10 MHz to 2 GHz >2 GHz to 4.096 GHz >4.096 GHz to 6.0 GHz		-70 dBc -65 dBc -60 dBc	-60 dBc -50 dBc -45 dBc	@ 0 dBm @ 0 dBm @ 0 dBm
				@ 0 dBm

¹ All MIN/ MAX performance parameters are guaranteed and 100% verified during final performance test, unless noted otherwise.

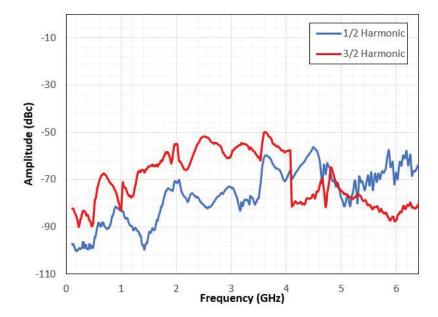
² Typical performance is "by design" and consistent with field performance data.


HS9000 Series Multi-Channel RF Synthesizers 1 GHz/2 GHz/3 GHz/4 GHz/6 GHz MAXIMUM OUTPUT POWER

MAXIMUM OUTPUT POWER

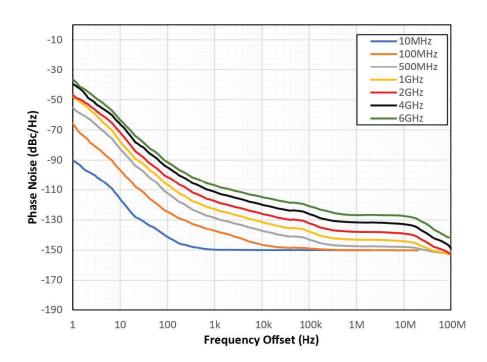
The data shown here represents typical unleveled performance.

HS9000 Series Multi-Channel RF Synthesizers 1 GHz/2 GHz/3 GHz/4 GHz/6 GHz HARMONICS AND SUB-HARMONICS



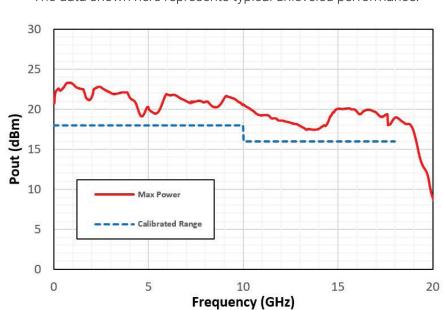
HARMONICS

Harmonic data taken at 0 dBm carrier power level


SUB-HARMONICS

Sub-harmonic data taken at 0 dBm carrier power level

HS9000 Series Multi-Channel RF Synthesizers 1 GHz/2 GHz/3 GHz/4 GHz/6 GHz PHASE NOISE PERFORMANCE


HS9000 Series Multi-Channel RF Synthesizers 12 GHz/18 GHz AMPLITUDE PERFORMANCE

The specified amplitude based parameters for the HS9000 Series Multi-Channel RF Synthesizers are fully verified at final performance test and 100% guaranteed for the full warranty period of the product.

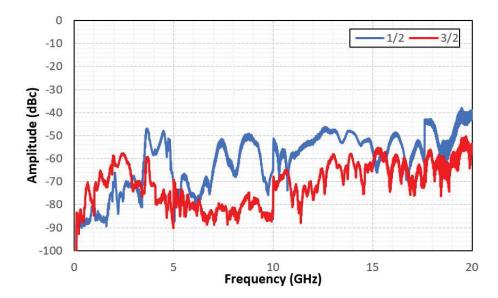
PARAMETER	MIN ¹	TYPICAL ²	MAX ¹	COMMENTS
Output Power (Calibrated) 100 MHz to 10 GHz 10 GHz to 18 GHz	-10 dBm -10 dBm		+18 dBm +16 dBm	Settable -30 to +23 dBm
Absolute Level Accuracy 100 MHz - 10 GHz -10 dBm to 0 dBm 0 dBm to +14 dBm +14 dBm to +18 dBm 10 GHz - 18 GHz -10 dBm to 0 dBm 0 dBm to +10 dBm +10 dBm to +16 dBm			± 3.0 dB ± 1.5 dB ± 2.0 dB ± 3.0 dB ± 1.5 dB ± 2.5 dB	20 °C to 30 °C (ambient temperature)
Resolution		0.01 dB		
Connector		50 Ω		SMA
SWR (S 11) 100 MHz < f ≤ 6 GHz 6 GHz < f ≤ 18 GHz		1.33 (-17.0 dB) 1.43 (-15.0 dB)		Measured Measured
Maximum Reverse Power Max DC Voltage > 100 MHz		iximum by desig nax by design.	n.	*** Some applications may require reverse power protection.
Switching Speed (Amplitude) SPI Mode (Binary)		200 µs		Settled within 10% of set value
SSB Phase Noise 2.0 GHz, 10 kHz offset 4.0 GHz, 10 kHz offset 8.0 GHz, 10 kHz offset 12.0 GHz, 10 kHz offset 18.0 GHz, 10 kHz offset		-125 dBc/Hz -119 dBc/Hz -113 dBc/Hz -110 dBc/Hz -106 dBc/Hz	≤ -119 dBc/Hz ≤ -113 dBc/Hz ≤ -107 dBc/Hz ≤ -104 dBc/Hz ≤ -100 dBc/Hz	See plot on page 13 for measured data.
Harmonics (CW mode) 500 MHz to 5 GHz >5 GHz to 10 GHz >10 GHz to 18 GHz		(2ND / 3RD) -35 / -55 dBc -35 / -50 dBc -25 / -45 dBc	(2ND / 3RD) -25 / -45 dBc -20 / -40 dBc -15 / -35 dBc	See plot on page 12 for measured data. @ 0 dBm @ 0 dBm @ 0 dBm 3rd harmonic level, nominal only above 16.6 GHz
Sub-Harmonics (CW mode) 100 MHz to 18 GHz		(1/2 / 3/2) -60 / -70 dBc	(1/2 / 3/2) -35 / -45 dBc	See plot on page 12 for measured data. @ 0 dBm
Non-Harmonics/Broadband Spurious (CW mode) 100 MHz to 4 GHz >4 GHz to 8 GHz >8 GHz to 16 GHz >16 GHz to 18GHz		-75 dBc -65 dBc -60 dBc -55 dBc	-50 dBc -40 dBc -35 dBc -30 dBc	@ 0 dBm @ 0 dBm @ 0 dBm @ 0 dBm
Jitter (RMS) 3 GHz 6 GHz 18 GHz		85 fs 89 fs 130 fs		5 kHz < BW < 20 MHz

All MIN/ MAX performance parameters are guaranteed and 100% verified during final performance test, unless noted otherwise.
 Typical performance is "by design" and consistent with field performance data.

HS9000 Series Multi-Channel RF Synthesizers 12 GHz/18 GHz MAXIMUM OUTPUT POWER

MAXIMUM OUTPUT POWER The data shown here represents typical unleveled performance.

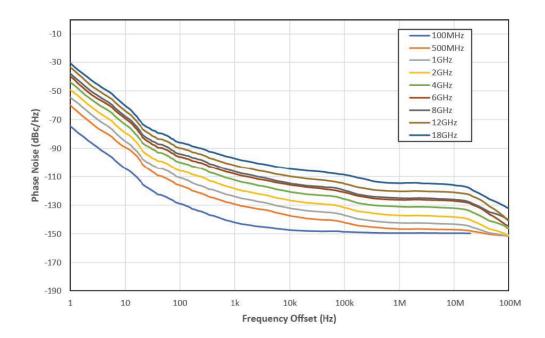
HS9000 Series Multi-Channel RF Synthesizers 12 GHz/18 GHz HARMONICS AND SUB-HARMONICS


0 2nd 3rd -10 -20 Amplitude (dBc) -30 -40 -50 -60 -70 -80 0 5 10 15 20 Frequency (GHz)

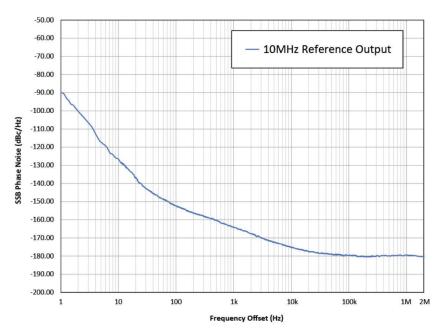
HARMONICS

Harmonic data taken at 0 dBm carrier power level

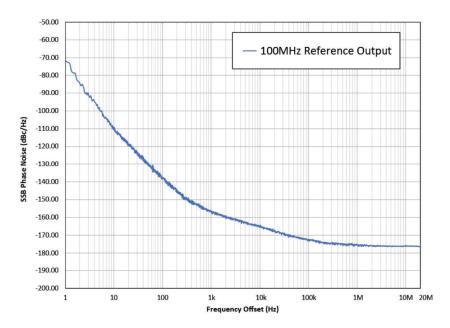
SUB-HARMONICS


Sub-harmonic data taken at 0 dBm carrier power level

HS9000 Series Multi-Channel RF Synthesizers 12 GHz/18 GHz PHASE NOISE PERFORMANCE


PHASE NOISE PERFORMANCE

(Pout = +10 dBm)


HS9000 Series Multi-Channel RF Synthesizers REFERENCE PHASE NOISE PERFORMANCE

The HS9000 Series synthesizers come equipped with fixed 10 MHz and 100 MHz reference outputs. The fixed reference output signals are derived directly from the internal reference standard (100 MHz OCXO).

10 MHz REFERENCE OUTPUT SSB PHASE NOISE

100 MHz Reference Output SSB Phase Noise

HS9000 Series Multi-Channel RF Synthesizers ELECTRICAL SPECIFICATIONS - MODULATION

The external stimulus modulation parameters are only available on units equipped with option OPT-EXTMOD. Units with OPT-EXTMOD have channel dedicated modulation input ports installed.

EXTERNAL MODULATION (channels up to 6 GHz)

PARAMETER	PERFORMANCE ¹	COMMENTS
FREQUENCY MODULATION (Analog)		
Max Deviation	100 kHz	
Resolution	0.01% or 1 mHz, whichever is greater	
Deviation Accuracy	< ± 2%	
Modulation Freq. Response	DC to 20 kHz (-3 dB)	DC Coupled
Sensitivity when using Ext. Input	\pm 1V peak into 50Ω	+ 1V: Maximum Positive Deviation 0V: Zero Deviation from Carrier - 1V: Maximum Negative Deviatior
PHASE MODULATION (Analog)		
Max Deviation	±1.6 deg to ±180 deg	
Frequency Response	DC to 20 kHz (-3 dB)	DC Coupled
Resolution	Frequency Dependent	See Phase Offset Specification
Sensitivity when using Ext. Input	± 1V peak into 50Ω	+ 1V: Maximum Positive Deviation 0V: Zero Deviation from Carrier - 1V: Maximum Negative Deviatior
AMPLITUDE MODULATION (Analog)		
AM Depth Type	Linear	
Depth Maximum Resolution Depth Accuracy	5% to 75% <3% of Maximum Depth 5% of Maximum Depth	0.45 dB to 12 dB
Modulation Rate	DC to 10 kHz (-3 dB)	DC Coupled
Sensitivity when using Ext. Input	\pm 1V peak for indicated Depth (into 500)	+ 1V: Maximum Amplitude 0V: 50% of Maximum Depth - 1V: Maximum Depth
PULSE MODULATION (Analog)		
Risetime (Tr)	<100 ns	
Falltime (Tf)	<100 ns	
On/Off Ratio	>70 dB	
Minimum Pulse Width	1 µs	
ALC Loop Deviation (ALC disabled)	1 dB difference from ALC enabled	

¹ Nominal

PARAMETER	PERFORMANCE ¹	COMMENTS
External Trigger Threshold	+1.2 V	±5% into 50 Ω

¹ Nominal

HS9000 Series Multi-Channel RF Synthesizers MODULATION PERFORMANCE (Self Pulse)

HSM series synthesizers are capable of operating in self pulse modulation mode, which does not require an external stimulus signal.

PARAMETER	PERFORMANCE ¹	COMMENTS
PULSE MODULATION (Analog)		
Risetime (Tr)		
fc < 512 MHz	10 ns	
fc > 512 MHz	35 ns	
Falltime (Tf)		
fc < 512 MHz	8 ns	
fc > 512 MHz	10 ns	
On/Off Ratio	> 70dB	
Minimum Pulse Width	50 ns	
ALC Loop Deviation (ALC disabled)	1 dB difference from ALC enabled	

¹ Nominal

² Internal pulse modulation for frequencies greater than 512 MHz will exhibit increased settling time.
 Contact Holzworth customer support for additional data.

HS9000 Series Multi-Channel RF Synthesizers ENVIRONMENTAL SPECIFICATIONS

THESE MODULES ARE DESIGNED FOR INDOOR USE ONLY

Environmental specifications are based on component margins, thermal verification testing and current draw tests. Production unit performance is not verified over temperature.

PARAMETER	MIN ¹	TYPICAL ²	MAX ¹	COMMENTS
Operating Temperature	0 °C		+55 °C	
Temperature Monitor Range	-40 °C		+85 °C	Absolute, channel dedicated outputs
AC Power Supply Rated Voltage Voltage Range Rated Frequency Frequency Range	100 VAC 90 VAC 50 Hz 47 Hz		240 VAC 264 VAC 60 Hz 63 Hz	
Power Consumption Chassis Power Consumption Each ≤6 GHz channel Each 12/18 GHz channel		5 W 9 W 15 W		
Warm-Up Time		15 min	30 min	20 °C (ambient temp. dependent)

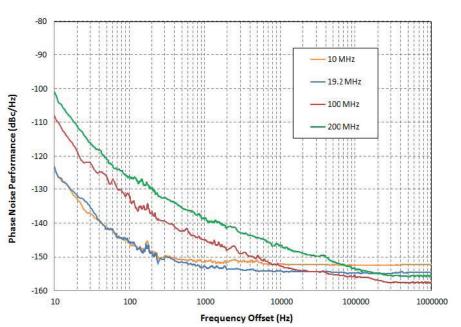
¹ All MIN/ MAX performance parameters are guaranteed and 100% verified during final performance test, unless noted otherwise.

² Typical performance is "by design" and consistent with field performance data.

DESCRIPTION	SPECIFICATION (by design)	
Operating Environment Humidity Altitude Vibration	RH 20% to 80% at wet bulb temp. <29 °C (non-condensing) 0 to 2,000m (0 to 6,561 feet) 0.21 G-rms maximum, 5Hz to 500Hz	
Storage (Non-Operating) Temperature Humidity Altitude Altitude Vibration	-10 °C to + 60 °C RH 20% to 80% at wet bulb temp. <40 °C (non-condensing) 0 to 4,572m (0 to 15,000 feet) 0.5 G-rms maximum, 5 Hz to 500 Hz	

REGULATORY COMPLIANCE

CE compliance with the following European Union directives Low Voltage Directive EU 2014/35 Electromagnetic Compatibility Directive (EMC) EU 2014/30 ROHS Directive EU 2015/863, WEEE Directive EU 2012/19


HS9000 Series Multi-Channel RF Synthesizers OPTION SPECIFICATIONS

Option OPT-CMOS is an additional channel (or channels) loaded into the multi-channel system. OPT-CMOS provides a CMOS logic output signal, which may be optimal for a system that requires square wave trigger or clock signals.

PARAMETER	MIN ¹	TYPICAL ²	MAX ¹	COMMENTS
Frequency Range	10 MHz		500 MHz	
Output Voltage (CMOS Logic)		0V - 5V		0V to 2.5V into 50Ω
Phase Noise 10 MHz, 10 kHz Offset 19.2 MHz, 10 kHz Offset 100 MHz, 10 kHz Offset 200 MHz, 10 kHz Offset		-152 dBc/Hz -154 dBc/Hz -152 dBc/Hz -146 dBc/Hz	-145 dBc/Hz -145 dBc/Hz -143 dBc/Hz -135 dBc/Hz	
Rise Time / Fall Time (Tr/ Tf)		900 ps		
Output Impedance		50Ω		

¹ All MIN/ MAX performance parameters are guaranteed and 100% verified during final performance test, unless noted otherwise.

² Typical performance is "by design" and consistent with field performance data.

OPTION OPT-CMOS PHASE NOISE PERFORMANCE

HS9000 Series Multi-Channel RF Synthesizers HS9000B SERIES OPT-0709-n SPECIFICATIONS

The electrical performance outlined within this section covers the details for the HS9000B Series option: OPT-0709-n. This version of the HS900B has been designed specifically to address quantum computing applications offering higher channel density for the narrower application-specific frequency range.

FREQUENCY PERFORMANCE

PARAMETER	MIN ¹	TYPICAL²	MAX ¹	COMMENTS
Number of Outputs (per 1U chassis)	2		16	Independently tunable channels.
Frequency Range	7 GHz		9 GHz	
Frequency Resolution	0.001 Hz			
Internal Time Base Reference (Oscillator Aging Rate)		± 1 ppm/yr		1st year. ±0.5 ppm/yr each subsequent year
Temperature Effects		±1 ppm		0 to 55 °C
Line Voltage Effects (12V)		± 0.1 ppm		±5%
Internal Time Base Reference (Oscillator Aging Rate)		± 1 ppm/yr		1st year. ±0.5 ppm/yr each subsequent year
Temperature Effects		≤±5 ppb		0 to 55 °C
Reference Output Frequency Amplitude Impedance	+4 dBm	100 MHz 50 Ω		Nominal Nominal
External Reference Input (standard) Input Frequency Lock Range External Amplitude Impedance Waveform	0 dBm	10/100 MHz ± 4 ppm 50 Ω	+15 dBm	10 MHz or Internal 100 MHz Ref. 2 Hz Locking BW 50 Ω (nominal) Sine or Square

AMPLITUDE PERFORMANCE

PARAMETER	MIN ¹	TYPICAL ²	MAX ¹	COMMENTS
Output Power	0 dBm		+10 dBm	Independently tunable channels
Resolution		0.01 dB		Independently tunable channels
Maximum Reverse Power Max DC Voltage > 100 kHz		aximum by desig dBm) max by d		
Switching Speed (Amplitude)	5 ms maxir	mum by design.	Settling to within	0.1 dB.
Absolute Level Accuracy		± 0.10 dB	± 0.5 dB	20 °C to 30 °C (ambient temperature)
SSB Phase Noise 7.0 GHz, 10 kHz offset 8.0 GHz, 10 kHz offset 9.0 GHz, 10 kHz offset		-111 dBc/Hz -111 dBc/Hz -111 dBc/Hz		
Harmonics		-30 dBc	-20 dBc	
Sub-Harmonics 7000 MHz ≤ f ≤ 7500 MHz 7500 MHz < f ≤ 9000 MHz		-45 dBc -60 dBc	-35 dBc -50 dBc	
Non-Harmonics / Spurious		-48 dBc	-38 dBc	

All MIN/ MAX performance parameters are guaranteed and 100% verified during final performance test, unless noted otherwise.

² Typical performance is "by design" and consistent with field performance data.

HS9000 Series Multi-Channel RF Synthesizers HS9000B SERIES OPT-0709-n CONFIGURATION GUIDE

The HS9000 Series synthesizer platform is designed to be user/application defined. Follow three easy steps to determine the part number with the required options.

STEP 1: SELECT TOTAL NUMBER OF CHANNELS

Select the base part number, strictly calling out the total number of channels to be loaded into the multi-channel chassis. Channels are available in multiples of two up to a maximum of 16.

No. Channels	2	4	6	8	10	12	14	16
Part Number	HS9002B	HS9004B	HS9006B	HS9008B	HS9010B	HS9012B	HS9014B	HS9016B

STEP 2: SELECT CHANNEL FREQUENCY OPTIONS

Select the channel frequency option. Note that the total number of channels specified here must equal the number of channels selected under STEP 1.

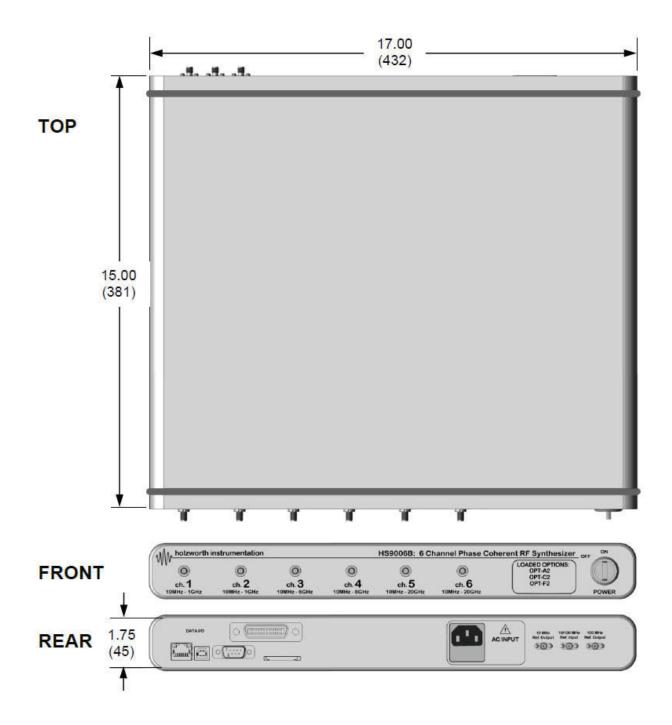
Frequency Range	2x	4x	бх	8x	10x	12x	14x	16x
7 GHz 9 GHz	OPT-0709-2	OPT-0709-4	OPT-0709-6	OPT-0709-8	OPT-0709-10	OPT-0709-12	OPT-0709-14	OPT-0709-16

STEP 3: SELECT OPTIONS AND ACCESSORIES

The options listed in this section are available for the multi-channel platform to comply with application specific requirements.

ТҮРЕ	Part Number	Description
OPTION	OPT-REFX	160 MHz Reference Input Capability (100 kHz Increments)
ACCESSORY	RACK-1U	19" Rack Mount Bracket Kit, 90° rear bracket
ACCESSORY	RACK2-1U	19" Rack Mount Bracket Kit, straight rear bracket

PART NUMBER EXAMPLE


Ordering a 16-channel 7 GHz – 9 GHz synthesizer would result in the following configuration:

		Description
Part Number	HS9016B	16 ch, Multi-Channel RF Synthesizer
Options	OPT-0709-16	16x 7 GHz to 9 GHz Channels

HS9000 Series Multi-Channel RF Synthesizers **MECHANICAL CONFIGURATION**

The HS9000 Series comes in a 1U high, rack mountable chassis. The example shown is of a 6 channel unit (front panel configuration may vary). A universal rack mount bracket kit is an available accessory (Part No.: RACK-1U or RACK2-1U). Mechanical dimensions are listed in inches (and millimeters).

HS9000 Series Multi-Channel RF Synthesizers CONNECTORS and PHYSICAL SPECIFICATIONS

FRONT PANEL

DESCRIPTION	CONFIGURATION
RF Output Connector Type	SMA Jack. 1-8 Output Ports, dependent on loaded options. 50 ohm.
Modulation Input(s)	SMA Jack. 1-6 Output Ports, dependent on loaded options. 50 ohm.

REAR PANEL

DESCRIPTION	CONFIGURATION
100 MHz Reference Output	SMA Jack. 50 ohm.
10 MHz Reference Output	SMA Jack. 50 ohm.
Reference Input Port	SMA Jack. 50 ohm.
AC Power Input AC Input Rating	IEC 320-C13 90-260 VAC, 47-63 Hz. Specify country at time of order for proper power cord.
Data I/O Interface Connectivity Storage	USB (B-Type), Ethernet, RS-232, GPIB SD Card Reader

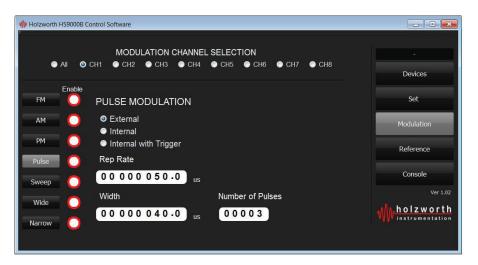
PHYSICAL

DESCRIPTION	1U high, 19" rack mount: 15in x 17in x 1.75in (381mm x 431.8mm x 44.5mm)
CONFIGURATION	25 lb (10.9 kilograms) MAXIMUM

INCLUDED HARDWARE AND CERTIFICATIONS

Each product delivery includes specific, standard hardware and certifications.

DESCRIPTION		
HS9000 SERIES SYNTHESIZER		
AC Power Cord (7 ft/2.1 m) 1		
Ethernet Cable (10 ft/3 m)		
USB Cable (6 ft/1.8 m)		
CALIBRATION CERTIFICATION		


¹ Specify final country of destination for shipment with proper power cord.

HS9000 Series Multi-Channel RF Synthesizers INTERFACE GUI

The HS9000 Series hardware utilizes a virtual front panel as the command/control interface. Each unit comes with an open license to operate the application on any standard PC, including those equipped with touch screen monitors. The analyzer operates under the HID (Human Interface Device) protocol, which means there are no drivers to install. The C++ based application GUI compliments the driver free instrument by being extremely reliable. The open DLL can also be directly accessed for control of the unit via MATLAB[™], LabVIEW[™], C++ code, Visual Basic, etc.

Power On/Off Master	S9000B Control S	oottware	M	ASTER SELECT y Power Phase		- Devices
	FREQUE	NCY		POWER	PHASE	
	GHz MHz	kHz Hz	mHz	dBm	degrees	Set
ch 1 🜔	01000	0 0 0 0 0 0	0 0 0 0	+000.00	+000.0	
ch 2 🜔	01000	0 0 0 0 0 0	0000	+000.00	+000.0	Modulation
ch 3 🔘	01000	0 0 0 0 0 0	0 0 0 0	+000.00	+000.0	Reference
ch 4 🔘	01000	0 0 0 0 0 0	0000	+000.00	+000.0	
ch 5 💍	01000	0 0 0 0 0 0	0 0 0 0	+000.00	+000.0	Console
ch 6 🚺	01000	0 0 0 0 0 0	0 0 0 0	+000.00	+000.0	Ver 1.02
ch 7 🚺	01000	0 0 0 0 0 0	0 0 0 0	+000.00	+000.0	M. holzworth
ch 8 💍	01000	0 0 0 0 0 0	0 0 0 0	+000.00	+000.0	VVV instrumentation
	Siles.					

HS9000B SERIES MAIN CONTROL WINDOW

HS9000B SERIES MODULATION CONTROL WINDOW

HS9000 Series Multi-Channel RF Synthesizers WARRANTY

All Holzworth HS9000 Series synthesizer products come with a standard 3 year 100% product warranty covering manufacturing defects. All product repairs and maintenance must be performed by Holzworth Instrumentation. Holzworth reserves the right to invalidate the warranty for any products that have been tampered with or used improperly. Refer to Holzworth Terms & Conditions of Sales for more details.

Holzworth products are proudly designed and assembled in the USA.

CONTACT INFORMATION

Contact Holzworth directly for a product quotation, a product demonstration, or for technical inquiries.

Holzworth Instrumentation Sales Support

Phone: +1.303.325.3473

Holzworth Instrumentation Technical Support

Phone:	+1.303.325.3473
Email:	support@holzworth.com

Wireless Telecom Group Inc.

25 Eastmans Rd Parsippany, NJ United States Tel: +1 973 386 9696 Fax: +1 973 386 9191 holzworth.com

© Copyright 2023 All rights reserved.

H/HS Series/0723/EN Note: Specifications, terms and conditions are subject to change without prior notice.